【題目】如圖,已知AD是△ABC的角平分線,⊙O經(jīng)過A、B、D三點.過點B作BE∥AD,交⊙O于點E,連接ED。
(1)求證:ED∥AC
(2)若BD=2CD,設(shè)△EBD的面積為S1 , △ADC的面積為S2 , 且S12﹣16S2+4=0,求△ABC的面積
【答案】
(1)
證明:∵AD是△ABC的角平分線,∴∠BAD=∠DAC,∵∠E=∠BAD,∴∠E=∠DAC,∵BE∥AD,∴∠E=∠EDA,∴∠EDA=∠DAC,∴ED∥AC
(2)
解:∵BE∥AD,∴∠EBD=∠ADC,∵∠E=∠DAC,∴△EBD∽△ADC,且相似比k==2,∴=k2=4,即s1=4s2,∵﹣16S2+4=0,
∴16﹣16S2+4=0,即=0,∴S2=,∵====3,∴S△ABC=
【解析】(1)由AD是△ABC的角平分線,得到∠BAD=∠DAC,由于∠E=∠BAD,等量代換得到∠E=∠DAC,根據(jù)平行線的性質(zhì)和判定即可得到結(jié)果;
(2)由BE∥AD,得到∠EBD=∠ADC,由于∠E=∠DAC,得到△EBD∽△ADC,根據(jù)相似三角形的性質(zhì)相似三角形面積的比等于相似比的平方即可得到結(jié)果.
【考點精析】掌握圓周角定理和相似三角形的判定與性質(zhì)是解答本題的根本,需要知道頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當y>0時,x的取值范圍是﹣1≤x<3
⑤當x<0時,y隨x增大而增大
其中結(jié)論正確的個數(shù)是( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在以O(shè)為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)y= (x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k=( )
A.
B.
C.
D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為提高學生參與體育活動的積極性,2011年9月圍繞“你最喜歡的體育運動項目(只寫一項)”這一問題,對初一新生進行隨機抽樣調(diào)查,下圖是根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖(不完整).
請你根據(jù)圖中提供的信息解答下列問題:
(1)本次抽樣調(diào)查的樣本容量是多少?
(2)根據(jù)條形統(tǒng)計圖中的數(shù)據(jù),求扇形統(tǒng)計圖中“最喜歡足球運動”的學生數(shù)所對應(yīng)扇形的圓心角度數(shù).
(3)請將條形統(tǒng)計圖補充完整.
(4)若該市2011年約有初一新生21000人,請你估計全市本屆學生中“最喜歡足球運動”的學生約有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,過點D作對角線BD的垂線,交BC的延長線于點E,取BE的中點F,連接DF,DF=4.設(shè)AB=x,AD=y,則x2+(y﹣4)2的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,弦AD平分∠BAC,交BC于點E,AB=6,AD=5,則AE的長為( 。
A.2.5
B.2.8
C.3
D.3.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=mx+n與雙曲線y=相交于A(﹣1,2),B(2,b)兩點,與y軸相交于點C
(1)求m,n的值
(2)若點D與點C關(guān)于x軸對稱,求△ABD的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形OABC的頂點A的坐標為(2,0),∠COA=60°,將菱形OABC繞坐標原點O逆時針旋轉(zhuǎn)120°得到菱形ODEF.
(1)直接寫出點F的坐標:
(2)求線段OB的長及圖中陰影部分的面積:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com