某公園的兩個(gè)花圃,面積相等,形狀分別為正三角形和正六邊形,已知正三角形花圃的周長(zhǎng)為50米,則正六邊形花圃的周長(zhǎng)( 。
A.大于50米B.等于50米C.小于50米D.無(wú)法確定
正三角形花圃的周長(zhǎng)為50米,則邊長(zhǎng)為
50
3

正三角形的面積=
1
2
×sin60°×(
50
3
2=
625
3
4
,
則正六邊形的面積也為
625
3
4
,它由六個(gè)小的等邊三角形組成.
設(shè)它的邊長(zhǎng)為R,則有
625
3
4
=6×
1
2
×sin60°×R2
∴R=
50
6
18
,正六邊形的周長(zhǎng)=
50
3
6

50
3
6
<50,
∴正六邊形花圃的周長(zhǎng)小于50米.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,圓的直徑是10厘米,A、B、C、D分別為正方形各邊的中點(diǎn),則圖中陰影部分的面積是______平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O1和⊙O2都經(jīng)過(guò)A,B兩點(diǎn),經(jīng)過(guò)點(diǎn)A的直線CD交⊙O1于C,交⊙O2于D,經(jīng)過(guò)點(diǎn)B的直線EF交⊙O1于E,交⊙O2于F.求證:CEDF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC中,E、F分別是AB、AC上的點(diǎn).
①AD平分∠BAC,②DE⊥AB,DF⊥AC,③AD⊥EF.
以此三個(gè)中的兩個(gè)為條件,另一個(gè)為結(jié)論,可構(gòu)成三個(gè)命題,即:
①②?③,①③?②,②③?①.
(1)試判斷上述三個(gè)命題是否正確(直接作答);
(2)請(qǐng)證明你認(rèn)為正確的命題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正六邊形螺帽的邊長(zhǎng)是2cm,這個(gè)扳手的開(kāi)口a的值應(yīng)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

小趙對(duì)蕪湖科技館富有創(chuàng)意的科學(xué)方舟形象設(shè)計(jì)很有興趣,他回家后將一正五邊形紙片沿其對(duì)稱(chēng)軸對(duì)折.旋轉(zhuǎn)放置,做成科學(xué)方舟模型.如圖所示,該正五邊形的邊心距OB長(zhǎng)為
2
,AC為科學(xué)方舟船頭A到船底的距離,請(qǐng)你計(jì)算AC+
1
2
AB=______.(不能用三角函數(shù)表達(dá)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O為四邊形ABCD外接圓,其中
CD
=
CB
,其中CE⊥AB于E.
(1)求證:AB=AD+2BE;
(2)若∠B=60°,AD=6,△ADC的面積為
15
2
3
,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知如圖,△ABC和△DCE都是等邊三角形,若△ABC的邊長(zhǎng)為1,則△BAE的面積是______.
四邊形ABCD和四邊形BEFG都是正方形,若正方形ABCD的邊長(zhǎng)為4,則△FAC的面積是______.

如果兩個(gè)正多邊形ABCDE…和BPKGY…是正n(n≥3)邊形,正多邊形ABCDE…的邊長(zhǎng)是2a,則△KCA的面積是______.(結(jié)果用含有a、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面幾何中,我們可以證明:周長(zhǎng)一定的多邊形中,正多邊形面積最大.使用上邊的事實(shí),解答下面的問(wèn)題:
用長(zhǎng)度分別為2、3、4、5、6(單位:cm)的五根木棒圍成一個(gè)三角形(允許連接,但不允許折斷),求能夠圍成的三角形的最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案