當(dāng)α+β=90°時(shí),則下面成立         (     )

A.sinα+cosβ=0      B.sinα-sinβ=0

C.tgα-ctgβ=0      D.tgα+ctgβ=0

答案:C
提示:

sinα=cosβ, tgα=ctgβ。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.點(diǎn)O是AC的中點(diǎn),過(guò)點(diǎn)O的直線l與AB邊相交于點(diǎn)D.過(guò)點(diǎn)C作CE精英家教網(wǎng)∥AB交直線l于點(diǎn)E,設(shè)∠AOD=α.
(1)當(dāng)α等于多少度時(shí),四邊形EDBC是等腰梯形?并求此時(shí)AD的長(zhǎng);
(2)當(dāng)α=90°時(shí),判斷四邊形EDBC是否為菱形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(-8,0),直線BC經(jīng)過(guò)點(diǎn)B(-8,6),C(0,6),將四邊形OABC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)α度得到四邊形OA′B′C′,此時(shí)直線OA′、B′C′分別與直線BC相交于P、Q.
(1)四邊形OA′B′C′的形狀是
 
,當(dāng)α=90°時(shí),
BP
PQ
的值是
 
;
(2)①如圖2,當(dāng)四邊形OA′B′C′的頂點(diǎn)B′落在y軸正半軸上時(shí),求
BP
PQ
的值;
②如圖3,當(dāng)四邊形OA′B′C′的頂點(diǎn)B′落在直線BC上時(shí),求△OPB′的面積;
(3)在四邊形OABC旋轉(zhuǎn)過(guò)程中,當(dāng)0°<α≤180°時(shí),是否存在這樣的點(diǎn)P和點(diǎn)Q,使BP=
1
2
BQ?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,把矩形COAB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形CFED.設(shè)FC與AB交于點(diǎn)H,且A(0,4),C(6,0)(如圖1).
(1)當(dāng)α=60°時(shí),△CBD的形狀是
 
;
(2)當(dāng)AH=HC時(shí),求直線FC的解析式;
(3)當(dāng)α=90°時(shí),(如圖2).請(qǐng)?zhí)骄浚航?jīng)過(guò)點(diǎn)D,且以點(diǎn)B為頂點(diǎn)的拋物線,是否經(jīng)過(guò)矩形CFED的對(duì)稱中心M,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

己知:正方形ABCD.
(1)如圖1,點(diǎn)E、點(diǎn)F分別在邊AB和AD上,且AE=AF.此時(shí),線段BE、DF的數(shù)量關(guān)系和位置關(guān)系分別是什么?請(qǐng)直接寫出結(jié)論.
(2)如圖2,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)0°<α<90°時(shí),連接BE、DF,此時(shí)(1)中的結(jié)論是否成立,如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
(3)如圖3,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)α=90°時(shí),連接BE、DF,猜想當(dāng)AE與AD滿足什么數(shù)量關(guān)系時(shí),直線DF垂直平分BE.請(qǐng)直接寫出結(jié)論.
(4)如圖4,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)90°<α<180°時(shí),連接BD、DE、EF、FB得到四邊形BDEF,如果其對(duì)角線DF的長(zhǎng)度為
6
cm,那么四邊形BDEF的面積是多少?請(qǐng)直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知∠AOB與∠COD互余(∠COD的兩邊不在∠AOB的內(nèi)部),OM平分∠AOC,ON平分∠BOD,將∠COD繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn),使∠BOC=α(0°≤α<180°).
(1)若∠AOB=60°,∠COD=30°.
①當(dāng)α=0°時(shí),即OB與OC重合時(shí),如圖1,則∠MON=
45°
45°

②當(dāng)α=90°時(shí),即OA與OD在一條直線上,如圖2,求∠MON的度數(shù).
③當(dāng)α=140°時(shí),請(qǐng)補(bǔ)全圖形(如圖3),并求出∠MON的度數(shù).
(2)若∠AOB=β,∠COD=γ(β>γ),則∠MON=
45°或135°
45°或135°

查看答案和解析>>

同步練習(xí)冊(cè)答案