已知,如圖,一塊梯形木料ABCDADBC,經(jīng)測量知

AD=40cm,BC=125cm,∠B=45º,∠C=67.4º,求梯形木料ABCD

的高.(備用數(shù)據(jù):sin67.4° = ,cos67.4° = tan67.4° =

 


解:分別過點(diǎn)ADAEBC,DFBC,垂足為點(diǎn)E、F.………(1分)

AEDF,又∵ADBC,∴四邊形AEFD是平行四邊形,……………(2分)

AEDF,∵AD=40cm,EFAD=40cm ,設(shè)AEDFx

∵∠AEB=90º,∠B=45º,∴BEx

∵∠DFC=90º,∠C=67.4º,∴CF

BC=125cm,∴BCBEEFFCx+40+=125,

解得x=60,∴AEDF=60cm.

所以梯形木料ABCD的高為60 cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:
如圖(1),在四邊形ABCD中,對角線AC⊥BD,垂足為點(diǎn)P.求證:S四邊形ABCD=
1
2
AC•BD;
證明:∵AC⊥BD,
S△ACD=
1
2
AC•PD
S△ABC=
1
2
AC•BP

∴S四邊形ABCD=S△ACD+S△ACB=
1
2
AC•PD+
1
2
AC•BP
=
1
2
AC(PD+PB)=
1
2
AC•BD
解答問題:
(1)上述證明得到的性質(zhì)可敘述為
 

(2)已知:如圖(2),在等腰梯形ABCD中,AD∥BC,對角線AC⊥BD,且相交于點(diǎn)P,AD=3cm,BC=7cm,利用上述性質(zhì)求梯形的面積.
(3)如圖(3),用一塊面積為800cm2的等腰梯形彩紙做風(fēng)箏,并用兩根竹條作梯形的對角線固定風(fēng)箏,對角線恰好互相垂直,問竹條的長是多少?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖(1)AD是△ABC中BC邊的中線,則S△ABD=S△ACD,依據(jù)是
等底同高
等底同高

(2)如圖2梯形ABCD中,AD∥BC,對角線AC、BD交于點(diǎn)O,請找出圖中三對面積相等的三角形,
△ADC和△ADB;△ABC和△DBC;△AOB和△DOC
△ADC和△ADB;△ABC和△DBC;△AOB和△DOC

(3)李明家有一塊四邊形田地,如圖3所示.AE是一條小路,它把田地分成了面積相等的兩部分(小路寬忽略不計(jì)).在CD邊上點(diǎn)F處有一口水井,為方便灌溉田地,李明打算過點(diǎn)F修一條筆直的水渠,且要求水渠也把整個田地分成面積相等的兩部分(水渠寬忽略不計(jì)).請你幫李明設(shè)計(jì)出修水渠的方案,作圖并寫出設(shè)計(jì)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)已知:如圖(1)AD是△ABC中BC邊的中線,則S△ABD=S△ACD,依據(jù)是______.
(2)如圖2梯形ABCD中,AD∥BC,對角線AC、BD交于點(diǎn)O,請找出圖中三對面積相等的三角形,______.
(3)李明家有一塊四邊形田地,如圖3所示.AE是一條小路,它把田地分成了面積相等的兩部分(小路寬忽略不計(jì)).在CD邊上點(diǎn)F處有一口水井,為方便灌溉田地,李明打算過點(diǎn)F修一條筆直的水渠,且要求水渠也把整個田地分成面積相等的兩部分(水渠寬忽略不計(jì)).請你幫李明設(shè)計(jì)出修水渠的方案,作圖并寫出設(shè)計(jì)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀材料:
如圖(1),在四邊形ABCD中,對角線AC⊥BD,垂足為點(diǎn)P.求證:S四邊形ABCD=數(shù)學(xué)公式AC•BD;
證明:∵AC⊥BD,
數(shù)學(xué)公式
∴S四邊形ABCD=S△ACD+S△ACB=數(shù)學(xué)公式AC•PD+數(shù)學(xué)公式AC•BP
=數(shù)學(xué)公式AC(PD+PB)=數(shù)學(xué)公式AC•BD
解答問題:
(1)上述證明得到的性質(zhì)可敘述為______
(2)已知:如圖(2),在等腰梯形ABCD中,AD∥BC,對角線AC⊥BD,且相交于點(diǎn)P,AD=3cm,BC=7cm,利用上述性質(zhì)求梯形的面積.
(3)如圖(3),用一塊面積為800cm2的等腰梯形彩紙做風(fēng)箏,并用兩根竹條作梯形的對角線固定風(fēng)箏,對角線恰好互相垂直,問竹條的長是多少?

查看答案和解析>>

同步練習(xí)冊答案