4比8小________;a比a+2小________,6比-6大________,6比-6小________.

答案:
解析:

4,2,12,-12


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、正在改造的人行道工地上,有兩種鋪設(shè)路面材料:一種是長為acm、寬為bcm的矩形板材(如圖1),另一種是邊長為ccm的正方形地磚(如圖2).
(1)用多少塊如圖2所示的正方形地磚能拼出一個(gè)新的正方形?(只要寫出一個(gè)符合條件的答案即可),并寫出新正方形的面積;
(2)現(xiàn)用如圖1所示的四塊矩形板材鋪成一個(gè)大矩形(如圖3)或大正方形(如圖4),中間分別空出一個(gè)小矩形和一個(gè)小正方形.
①試比較中間的小矩形和中間的小正方形的面積哪個(gè)大?大多少?
②如圖4,已知大正方形的邊長比中間小正方形的邊長多20cm,面積大3200cm2.如果選用如圖2所示的正方形地磚(邊長為20cm)鋪設(shè)圖4中間的小正方形部分,那么能否做到不用切割地磚就可直接密鋪(縫隙忽略不計(jì))呢?若能,請求出密鋪所需地磚的塊數(shù);若不能,至少要切割幾塊如圖2的地磚?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:黃岡難點(diǎn)課課練八年級(jí)數(shù)學(xué)下冊(北師大版) 題型:044

有若干件產(chǎn)品有大小兩種箱子包裝.每只大箱裝滿是12件,每只小箱裝滿是8件.下列三種包裝方案中每只箱子必須裝滿.

方案一:產(chǎn)品的一半用大箱裝,一半用小箱裝;

方案二:產(chǎn)品的用大箱裝,其余用小箱裝;

方案三:產(chǎn)品的用大箱裝,其余用小箱裝,那么比“方案一”可少用5只箱子.

(1)求產(chǎn)品的件數(shù);

(2)如果每只大箱的包裝費(fèi)比每只小箱子的包裝費(fèi)高k%,試確定選擇哪種包裝方案能使包裝費(fèi)用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(6分)十八世紀(jì)瑞士數(shù)學(xué)家歐拉證明了簡單多面體中頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個(gè)有趣的關(guān)系式,被稱為歐拉公式.請你觀察下列幾種簡單多面體模型,解答下列問題:

【小題1】(1)根據(jù)上面多面體模型,完成表格中的空格:
多面體
頂點(diǎn)數(shù)(V)
面數(shù)(F)
棱數(shù)(E)
四面體
4
4
6
長方體
8
6
12
正八面體
6
8
12
正十二面體
 
 
 
【小題2】(2)你發(fā)現(xiàn)頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是       
【小題3】(3)一個(gè)多面體的面數(shù)比頂點(diǎn)數(shù)大8,且有30條棱,則這個(gè)多面體的面數(shù)是       
【小題4】(4)某個(gè)玻璃鉓品的外形是簡單多面體,它的外表面是由三角形和八邊形兩種多邊形拼接而成,且有24個(gè)頂點(diǎn),每個(gè)頂點(diǎn)處都有3條棱,設(shè)該多面體外表三角形的個(gè)數(shù)為x個(gè),八邊形的個(gè)數(shù)為y個(gè),x+y=       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:通過學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小,與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化。類似地,可以在等腰三角形中,建立邊角之間的聯(lián)系。我們定義:等腰三角形中底邊長與腰長的比叫做頂角正對(sad)。如圖1,在⊿ABC中,AB=AC,頂角A的正對記作sadA,這時(shí)sadA=。容易知道一個(gè)角的大小,與這個(gè)角的正對值也是相互唯一確定的。根據(jù)上述角的正對定義,解下列問題:

【小題1】計(jì)算:sad60°= ▲  
【小題2】對于0°<A<90°,∠A的正對值sadA的取值范圍是 ▲  ;
【小題3】如圖2,已知△DEF中,∠E=90°,cosD=,試求sadD的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆福建永安九年級(jí)學(xué)業(yè)質(zhì)量檢測考試數(shù)學(xué)試卷(帶解析) 題型:解答題

閱讀理解:通過學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小,與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化。類似地,可以在等腰三角形中,建立邊角之間的聯(lián)系。我們定義:等腰三角形中底邊長與腰長的比叫做頂角正對(sad)。如圖1,在⊿ABC中,AB=AC,頂角A的正對記作sadA,這時(shí)sadA=。容易知道一個(gè)角的大小,與這個(gè)角的正對值也是相互唯一確定的。根據(jù)上述角的正對定義,解下列問題:

【小題1】計(jì)算:sad60°= ▲  
【小題2】對于0°<A<90°,∠A的正對值sadA的取值范圍是 ▲  ;
【小題3】如圖2,已知△DEF中,∠E=90°,cosD=,試求sadD的值。

查看答案和解析>>

同步練習(xí)冊答案