在Rt△ABC中,∠BAC=90°,AC=4,D為BC上的點(diǎn),連接AD(如圖).如果將△ACD沿直線AD翻折后,點(diǎn)C恰好落在邊AB的中點(diǎn)處,那么點(diǎn)D到AB的距離是________.


分析:首先過(guò)點(diǎn)D作DF⊥AB于F,作DG⊥AC于G,取AB的中點(diǎn)E,連接DE,根據(jù)折疊的性質(zhì),即可得DF=DG,AB=8,又由S△ABC=AB•AC,S△ABC=S△ABD+S△ACD,即可求得答案.
解答:解:過(guò)點(diǎn)D作DF⊥AB于F,作DG⊥AC于G,取AB的中點(diǎn)E,連接DE,
根據(jù)題意得:∠BAD=∠CAD,
∴DF=DG,
∵將△ACD沿直線AD翻折后,點(diǎn)C恰好落在邊AB的中點(diǎn)處,
∴AE=AC=BE=4,
∴AB=8,
∵在Rt△ABC中,∠BAC=90°,
∴S△ABC=AB•AC,S△ABC=S△ABD+S△ACD=AB•DF+AB•DG,
設(shè)DF=x,
×8×4=×8x+×4x,
解得:x=,
∴點(diǎn)D到AB的距離是
故答案為:
點(diǎn)評(píng):此題考查了折疊問(wèn)題,角平分線的性質(zhì)等知識(shí).此題難度適中,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長(zhǎng)為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為( 。
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊(cè)答案