如圖,拋物線與軸交于兩點(diǎn),與軸相交于點(diǎn).連結(jié)AC、BC,B、C兩點(diǎn)的坐標(biāo)分別為B(1,0)、,且當(dāng)x=-10和x=8時函數(shù)的值相等.
1.求a、b、c的值;
2.若點(diǎn)同時從點(diǎn)出發(fā),均以每秒1個單位長度的速度分別沿邊運(yùn)動,其中一個點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動.連結(jié),將沿翻折,當(dāng)運(yùn)動時間為幾秒時,點(diǎn)恰好落在邊上的處?并求點(diǎn)的坐標(biāo)及四邊形的面積;
3.上下平移該拋物線得到新的拋物線,設(shè)新拋物線的頂點(diǎn)為D,對稱軸與x軸的交點(diǎn)為E,若△ODE與△OBC相似,求新拋物線的解析式。
1.∵當(dāng)x=-10和x=8時函數(shù)的值相等
∴拋物線的對稱軸為直線x=-1,
由題意得:a+b+c=0,c=,
∴…
2.令y=0,則 x=-3或1,∴A(-3,0)易得
∴△ABC為直角三角形,∠ACB=90°,∠A=30°,∠B=60°. ∴BM=BN=PN=PM,∴四邊形BNPM為菱形.設(shè)運(yùn)動t秒后點(diǎn)B在AC上,∵PN∥AB,∴ 過P作PE⊥AB于E,在RT△PBN中,
,四邊形的面積=…(若用其他方法證明酌情給分)
3.當(dāng)時; …當(dāng);當(dāng)時 當(dāng)時 …
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線與軸交于(,0)、(,0)兩點(diǎn),且,與軸交于點(diǎn),其中是方程的兩個根。(14分)
(1)求拋物線的解析式;
(2)點(diǎn)是線段上的一個動點(diǎn),過點(diǎn)作∥,交于點(diǎn),連接,當(dāng)的面積最大時,求點(diǎn)的坐標(biāo);
(3)點(diǎn)在(1)中拋物線上,
點(diǎn)為拋物線上一動點(diǎn),在軸上是
否存在點(diǎn),使以為頂
點(diǎn)的四邊形是平行四邊形,如果存在,
求出所有滿足條件的點(diǎn)的坐標(biāo),
若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線與軸交于兩點(diǎn),與軸相交于點(diǎn).連結(jié)AC、BC,B、C兩點(diǎn)的坐標(biāo)分別為B(1,0)、,且當(dāng)x=-10和x=8時函數(shù)的值相等.
1.求a、b、c的值;
2.若點(diǎn)同時從點(diǎn)出發(fā),均以每秒1個單位長度的速度分別沿邊運(yùn)動,其中一個點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動.連結(jié),將沿翻折,當(dāng)運(yùn)動時間為幾秒時,點(diǎn)恰好落在邊上的處?并求點(diǎn)的坐標(biāo)及四邊形的面積;
3.上下平移該拋物線得到新的拋物線,設(shè)新拋物線的頂點(diǎn)為D,對稱軸與x軸的交點(diǎn)為E,若△ODE與△OBC相似,求新拋物線的解析式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線與軸交于A、B兩點(diǎn),與軸交于C點(diǎn),四邊形OBHC為矩形,CH的延長線交拋物線于點(diǎn)D(5,2),連結(jié)BC、AD.
(1)求C點(diǎn)的坐標(biāo)及拋物線的解析式;
(2)將△BCH繞點(diǎn)B按順時針旋轉(zhuǎn)90º后再沿軸對折得到△BEF(點(diǎn)C與點(diǎn)E對應(yīng)),判斷點(diǎn)E是否落在拋物線上,并說明理由;
(3)設(shè)過點(diǎn)E的直線交AB邊于點(diǎn)P,交CD邊于點(diǎn)Q. 問是否存在點(diǎn)P,使直線PQ分梯形ABCD的面積為1∶3兩部分?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆四川省鹽邊縣紅格中學(xué)九年級下學(xué)期摸底考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn).
(1)請求出拋物線頂點(diǎn)的坐標(biāo)(用含的代數(shù)式表示),兩點(diǎn)的坐標(biāo);
(2)經(jīng)探究可知,與的面積比不變,試求出這個比值;
(3)是否存在使為直角三角形的拋物線?若存在,請求出;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆仙師中學(xué)九年級第一次月考試考試數(shù)學(xué)卷 題型:選擇題
如圖,拋物線與軸交于(,0)、(,0)兩點(diǎn),且,與軸交于點(diǎn),其中是方程的兩個根。(14分)
(1)求拋物線的解析式;
(2)點(diǎn)是線段上的一個動點(diǎn),過點(diǎn)作∥,交于點(diǎn),連接,當(dāng)的面積最大時,求點(diǎn)的坐標(biāo);
(3)點(diǎn)在(1)中拋物線上,
點(diǎn)為拋物線上一動點(diǎn),在軸上是
否存在點(diǎn),使以為頂
點(diǎn)的四邊形是平行四邊形,如果存在,
求出所有滿足條件的點(diǎn)的坐標(biāo),
若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com