(2010•長(zhǎng)沙)如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA=cm,OC=8cm,現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從O、C同時(shí)出發(fā),P在線(xiàn)段OA上沿OA方向以每秒cm的速度勻速運(yùn)動(dòng),Q在線(xiàn)段CO上沿CO方向以每秒1cm的速度勻速運(yùn)動(dòng)、設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)用t的式子表示△OPQ的面積S;
(2)求證:四邊形OPBQ的面積是一個(gè)定值,并求出這個(gè)定值;
(3)當(dāng)△OPQ與△PAB和△QPB相似時(shí),拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)B、P兩點(diǎn),過(guò)線(xiàn)段BP上一動(dòng)點(diǎn)M作y軸的平行線(xiàn)交拋物線(xiàn)于N,當(dāng)線(xiàn)段MN的長(zhǎng)取最大值時(shí),求直線(xiàn)MN把四邊形OPBQ分成兩部分的面積之比.

【答案】分析:(1)根據(jù)P、Q的運(yùn)動(dòng)速度,可用t表示出CQ、OP的長(zhǎng),進(jìn)而根據(jù)OC的長(zhǎng)求出OQ的表達(dá)式,即可由三角形的面積公式得到S、t的函數(shù)關(guān)系式;
(2)四邊形OPBQ的面積,可由矩形OABC、△QBC、△ABP的面積差求得,進(jìn)而可得到所求的定值;
(3)若△OPQ與△PAB和△QPB相似,那么△QPB必為直角三角形,且∠QPB=90°;由于∠BQP≠∠OPQ,所以這三個(gè)相似三角形的對(duì)應(yīng)關(guān)系是△OPQ∽△PBQ∽△ABP,根據(jù)相似三角形得到的比例線(xiàn)段求出t的值,進(jìn)而可確定點(diǎn)P的坐標(biāo),求出拋物線(xiàn)和直線(xiàn)BP的解析式;可設(shè)M點(diǎn)的橫坐標(biāo)為m,根據(jù)直線(xiàn)BP和拋物線(xiàn)的解析式,求出M、N的縱坐標(biāo),進(jìn)而可得到關(guān)于MN的長(zhǎng)與m的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出MN的最大值及對(duì)應(yīng)的M點(diǎn)坐標(biāo);設(shè)BQ與直線(xiàn)MN的交點(diǎn)為H,根據(jù)M點(diǎn)的坐標(biāo)和直線(xiàn)BQ的解析式即可求出H點(diǎn)的坐標(biāo),也就能得到MH的長(zhǎng),以MH為底,B、M橫坐標(biāo)差的絕對(duì)值為高,可求出△BHM的面積,進(jìn)而可根據(jù)四邊形OPBQ的面積求出五邊形OPMHQ的面積,由此可求出它們的比例關(guān)系式.
解答:(1)解:∵CQ=t,OP=t,CO=8,
∴OQ=8-t.
∴S△OPQ=(0<t<8);(3分)

(2)證明:∵S四邊形OPBQ=S矩形ABCO-S△CBQ-S△PAB
==32;(5分)
∴四邊形OPBQ的面積為一個(gè)定值,且等于32;(6分)

(3)解:當(dāng)△OPQ與△PAB和△QPB相似時(shí),△QPB必須是一個(gè)直角三角形,依題意只能是∠QPB=90°,
又∵BQ與AO不平行,
∴∠QPO不可能等于∠PQB,∠APB不可能等于∠PBQ,
∴根據(jù)相似三角形的對(duì)應(yīng)關(guān)系只能是△OPQ∽△PBQ∽△ABP(7分),
=
,
解得:t1=4,t2=8
經(jīng)檢驗(yàn):t=4是方程的解且符合題意,t=8不是方程的解,舍去;(從邊長(zhǎng)關(guān)系和速度考慮),
∴QO=4,
∴直線(xiàn)QB的解析式為:y=x+4,
此時(shí)P(,0);
∵B(,8)且拋物線(xiàn)經(jīng)過(guò)B、P兩點(diǎn),
∴拋物線(xiàn)是,直線(xiàn)BP是:(8分).
設(shè)M(m,)、N(m,).
∵M(jìn)在BP上運(yùn)動(dòng),

交于P、B兩點(diǎn)且拋物線(xiàn)的頂點(diǎn)是P;
∴當(dāng)時(shí),y1<y2(9分)
∴MN=|y1-y2|
=|m2-2m+8-(m-8)|
=m-8-(m2-2m+8)
=m-8-m2+2m-8
=-m2+3m-16
=,
∴當(dāng)時(shí),MN有最大值是2;
∴設(shè)MN與BQ交于H點(diǎn)則,
∴S△BHM==
∴S△BHM:S五邊形QOPMH==3:29
∴當(dāng)MN取最大值時(shí)兩部分面積之比是3:29.(10分)
點(diǎn)評(píng):此題是二次函數(shù)的綜合類(lèi)試題,涉及到矩形的性質(zhì)、相似三角形的判定和性質(zhì)、圖形面積的求法以及二次函數(shù)的應(yīng)用等重要知識(shí)點(diǎn),綜合性強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2010•長(zhǎng)沙)如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA=cm,OC=8cm,現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從O、C同時(shí)出發(fā),P在線(xiàn)段OA上沿OA方向以每秒cm的速度勻速運(yùn)動(dòng),Q在線(xiàn)段CO上沿CO方向以每秒1cm的速度勻速運(yùn)動(dòng)、設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)用t的式子表示△OPQ的面積S;
(2)求證:四邊形OPBQ的面積是一個(gè)定值,并求出這個(gè)定值;
(3)當(dāng)△OPQ與△PAB和△QPB相似時(shí),拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)B、P兩點(diǎn),過(guò)線(xiàn)段BP上一動(dòng)點(diǎn)M作y軸的平行線(xiàn)交拋物線(xiàn)于N,當(dāng)線(xiàn)段MN的長(zhǎng)取最大值時(shí),求直線(xiàn)MN把四邊形OPBQ分成兩部分的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(11)(解析版) 題型:填空題

(2010•長(zhǎng)沙)如圖,O為直線(xiàn)AB上一點(diǎn),∠COB=26°30′,則∠1=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圓》(04)(解析版) 題型:選擇題

(2010•長(zhǎng)沙)如圖,在⊙O中,OA=AB,OC⊥AB,則下列結(jié)論錯(cuò)誤的是( )

A.弦AB的長(zhǎng)等于圓內(nèi)接正六邊形的邊長(zhǎng)
B.弦AC的長(zhǎng)等于圓內(nèi)接正十二邊形的邊長(zhǎng)
C.
D.∠BAC=30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圖形認(rèn)識(shí)初步》(02)(解析版) 題型:填空題

(2010•長(zhǎng)沙)如圖,O為直線(xiàn)AB上一點(diǎn),∠COB=26°30′,則∠1=    度.

查看答案和解析>>

同步練習(xí)冊(cè)答案