如圖,在△ABC中,∠BAC=90°,AB=3,AC=4,AD是BC邊上的高,點(diǎn)E、F分別是AB邊和AC邊上的動點(diǎn),且∠EDF=90°.

(1)求DE:DF的值;
(2)連結(jié)EF,設(shè)點(diǎn)B與點(diǎn)E間的距離為x,△DEF的面積為y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍.

解:(1)∵∠BAC=90°,
∴∠B+∠C=90°,
∵AD是BC邊上的高,
∴∠DAC+∠C=90°,
∴∠B=∠DAC
又∵∠EDF=90°,
∴∠BDE+∠EDA=∠ADF+∠EDA=90°,
∴∠BDE=∠ADF,
∴△BED∽△AFD,
,
∵tanB=,
∴DE:DF=;                

(2)由△BED∽△AFD,得,
∴AF=BE=x,
∵BE=x,
∴AE=3-x,
∵∠BAC=90°,
∴EF2=(3-x)2+(x)2=x2-6x+9,
∵DE:DF=3:4,∠EDF=90°,
∴ED=EF,F(xiàn)D=EF,
∴y=ED•FD=EF2,
∴y=x2-x+(0≤x≤3).              

分析:(1)由在△ABC中,∠BAC=90°,AD是BC邊上的高,易證得△BED∽△AFD,然后由相似三角形的對應(yīng)邊成比例,即可求得答案;
(2)由勾股定理易得EF2=(3-x)2+(x)2=x2-6x+9,又由DE:DF=3:4,∠EDF=90°,即可求得答案.
點(diǎn)評:此題考查了相似三角形的判定與性質(zhì)、勾股定理以及直角三角形的性質(zhì).此題難度較大,注意掌握方程思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案