(2012•朝陽(yáng))如圖已知P為⊙O外一點(diǎn),PA為⊙O的切線(xiàn),B為⊙O上一點(diǎn),且PA=PB,C為優(yōu)弧
AB
上任意一點(diǎn)(不與A、B重合),連接OP、AB,AB與OP相交于點(diǎn)D,連接AC、BC.
(1)求證:PB為⊙O的切線(xiàn);
(2)若tan∠BCA=
2
3
,⊙O的半徑為
13
,求弦AB的長(zhǎng).
分析:(1)連接OA,OB,根據(jù)AP為圓O的切線(xiàn),利用切線(xiàn)的性質(zhì)得到∠OAP為直角,由半徑OA=OB,已知AP=BP,以及公共邊OP,利用SSS得出△OAP≌△OBP,利用全等三角形的對(duì)應(yīng)角相等得到∠OBP為直角,即BP垂直于OB,可得出BP為圓O的切線(xiàn);
(2)延長(zhǎng)BO與圓交于點(diǎn)E,連接AE,利用同弧所對(duì)的圓周角相等得到∠AEB=∠ACB,可得出tan∠AEB的值,由BE為圓O的直徑,利用直徑所對(duì)的圓周角為直角,得到∠BAE為直角,在直角三角形AEB中,設(shè)AB=2x,得到AE=3x,再由直徑BE的長(zhǎng),利用勾股定理得到關(guān)于x的方程,求出方程的解得到x的值,即可求出弦AB的長(zhǎng).
解答:(1)證明:連接OA,OB,如圖所示:

∵AP為圓O的切線(xiàn),
∴∠OAP=90°,
在△OAP和△OBP中,
AP=BP(已知)
OA=OB(半徑相等)
OP=OP(公共邊)
,
∴△OAP≌△OBP(SSS),
∴∠OAP=∠OBP=90°,
則BP為圓O的切線(xiàn);
(2)解:延長(zhǎng)線(xiàn)段BO,與圓O交于E點(diǎn),連接AE,
∵BE為圓O的直徑,∴∠BAE=90°,
∵∠AEB和∠ACB都對(duì)
AB
,
∴∠AEB=∠ACB,
∴tan∠AEB=tan∠ACB=
2
3

設(shè)AB=2x,則AE=3x,
在Rt△AEB中,BE=2
13
,
根據(jù)勾股定理得:(2x)2+(3x)2=(2
13
2,
解得:x=2或x=-2(舍去),
則AB=2x=4.
點(diǎn)評(píng):此題考查了切線(xiàn)的判定與性質(zhì),涉及的知識(shí)有:圓周角定理,銳角三角函數(shù)定義,全等三角形的判定與性質(zhì),切線(xiàn)的證明方法有兩種:有點(diǎn)連接,證垂直;無(wú)點(diǎn)作垂線(xiàn),證明垂線(xiàn)段等于半徑.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•朝陽(yáng))如圖所示中的折線(xiàn)ABC為甲地向乙地打長(zhǎng)途電話(huà)需付的電話(huà)費(fèi)y(元)與通話(huà)時(shí)間t(分鐘)之間的函數(shù)關(guān)系,則通話(huà)8分鐘應(yīng)付電話(huà)費(fèi)
7.4
7.4
元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•朝陽(yáng))如圖,△ABC三個(gè)頂點(diǎn)都在5×5的網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)的格點(diǎn)上,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△A′B′C的位置,且A′、B′仍落在格點(diǎn)上,則線(xiàn)段AC掃過(guò)的扇形所圍成的圓錐體的底面半徑是
13
4
13
4
單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•朝陽(yáng))如圖,在正方形ABCD內(nèi)有一折線(xiàn)段,其中AE⊥EF,EF⊥FC,并且AE=4,EF=8,F(xiàn)C=12,則正方形與其外接圓形成的陰影部分的面積為
80π-160
80π-160

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•朝陽(yáng))如圖,在四邊形ABCD中,E是BC邊的中點(diǎn),連接DE并延長(zhǎng),交AB的延長(zhǎng)線(xiàn)于F點(diǎn),AB=BF,請(qǐng)你添加一個(gè)條件(不需再添加任何線(xiàn)段或字母),使之能推出四邊形ABCD為平行四邊形,請(qǐng)證明.你添加的條件是
∠F=∠CDE
∠F=∠CDE

查看答案和解析>>

同步練習(xí)冊(cè)答案