當(dāng)k________0時(shí),雙曲線數(shù)學(xué)公式的值隨x(x>0)的增大而增大.


分析:根據(jù)反比例函數(shù)的性質(zhì):當(dāng)k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.
解答:當(dāng)k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大,
即k<0,雙曲線的值隨x(x>0)的增大而增大,
故答案為:<.
點(diǎn)評:此題主要考查了反比例函數(shù)的性質(zhì),關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì):
(1)反比例函數(shù)y=(k≠0)的圖象是雙曲線;
(2)當(dāng)k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減;
(3)當(dāng)k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線y=ax+b經(jīng)過點(diǎn)A(0,-3),與x軸交于點(diǎn)C,且與雙曲線交于點(diǎn)B(-4,-精英家教網(wǎng)a),D.
(1)求直線和雙曲線的函數(shù)關(guān)系式.
(2)求△CDO(其中O為原點(diǎn))的面積.
(3)根據(jù)圖象回答:當(dāng)x為何值時(shí),一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探索、研究:下圖是按照一定的規(guī)律畫出的一列“樹型”圖,下表的n表示“樹型”圖的序號,an表示第n個(gè)“樹型”圖中“樹枝”的個(gè)數(shù).
圖:精英家教網(wǎng)
表:
 n  1
 an  1 15 
(1)根據(jù)“圖”、“表”可以歸納出an關(guān)于n的關(guān)系式為
 

若直線l1經(jīng)過點(diǎn)(a1,a2)、(a2,a3),求直線l1對應(yīng)的函數(shù)關(guān)系式,并說明對任意的正整數(shù)n,點(diǎn)(an,an+1)都在直線l1上.
(2)設(shè)直線l2:y=-x+4與x軸相交于點(diǎn)A,與直線l1相交于點(diǎn)M,雙曲線y=
k
x
(x>0)經(jīng)過點(diǎn)M,且與直線l2相交于另一點(diǎn)N.
①求點(diǎn)N的坐標(biāo),并在如圖所示的直角坐標(biāo)系中畫出雙曲線及直線l1、l2
②設(shè)H為雙曲線在點(diǎn)M、N之間的部分(不包括點(diǎn)M、N),P為H上一個(gè)動點(diǎn),點(diǎn)P的橫坐標(biāo)為t,直線MP與x軸相交于點(diǎn)Q,當(dāng)t為何值時(shí),△MQA的面積等于△PMA的面積的2倍又是否存在t的值,使得△PMA的面積等于1?若存在,求出t的值;若不存在,請說明理由.
③在y軸上是否存在點(diǎn)G,使得△GMN的周長最。咳舸嬖,求出點(diǎn)G的坐標(biāo);若不存在,請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線y=-x+m與雙曲線y=
kx
(x>0)相交于C、D兩點(diǎn),且點(diǎn)C的坐標(biāo)為(3,1)
(1)求m的值和雙曲線的解析式;
(2)觀察直線的圖象寫出:當(dāng)y≥0時(shí),x的取值范圍;
(3)觀察雙曲線的圖象寫出:當(dāng)x≥1時(shí),y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y=x-1與雙曲線y=
kx
(x>0)交于點(diǎn)A(2,m).
(1)求m、k的值.
(2)利用圖象寫出當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值.
(3)連接OA,在x軸的正半軸上是否存在一點(diǎn)P,使△AOP是等腰三角形?若存在,請寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案