如圖,已知AB⊥BC,CD⊥BC,∠1=∠2,求證:EB∥FC.
證明:∵AB⊥BC,CD⊥BC     ( 已知 )
∴∠ABC=∠BCD=90°         (________)
又∵∠1=∠2                ( 已知 )
∴∠ABC-∠1=∠BCD-∠2      (________)
即∠EBC=∠FCB.
∴EB∥FC                   (________)

垂直定義    等量減等量,差相等    內(nèi)錯(cuò)角相等,兩直線平行
分析:由AB⊥BC,CD⊥BC(已知)∴∠ABC=∠BCD=90°(垂直定義)又∵∠1=∠2(已知)∴∠ABC-∠1=∠BCD-∠2(等量減等量,差相等)即∠EBC=∠FCB.根據(jù)內(nèi)錯(cuò)角相等,兩直線平行即可證明;
解答:證明:∵AB⊥BC,CD⊥BC(已知)
∴∠ABC=∠BCD=90°(垂直定義)
又∵∠1=∠2(已知)
∴∠ABC-∠1=∠BCD-∠2(等量減等量,差相等)
即∠EBC=∠FCB.
∴EB∥FC(內(nèi)錯(cuò)角相等,兩直線平行).
點(diǎn)評:本題考查了平行線的判定與性質(zhì),屬于基礎(chǔ)題,關(guān)鍵是掌握平行線的性質(zhì)與判定定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知AB⊥BC,BC⊥CD,∠1=∠2.試判斷BE與CF的關(guān)系,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知AB⊥BC,ED⊥BD,AB=CD,AC=CE.那么,AC與CE有何位置關(guān)系?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB⊥BC,EF⊥BC,CD⊥AD,則有:
(1)在△AEC中,AE邊上的高是
 
;
(2)在△FEC中,EC邊上的高是
 

(3)若AB=CD=2cm,AE=3cm,則△AEC的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB⊥BC,AB=3,BC=4,CD=12,DA=13,四邊形ABCD的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB⊥BC于B,DC⊥BC于C,AB=DC,求證:∠1=∠2.

查看答案和解析>>

同步練習(xí)冊答案