如圖,一次函數(shù)y1=ax+2與反比例函數(shù)y2=的圖象交于點(diǎn)A(4,m)和B(-8,-2),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.
(1)求a、k的值;
(2)過點(diǎn)A作AE⊥x軸于點(diǎn)E,若P為反比例函數(shù)圖象的位于第一象限部分上的一點(diǎn),且直線OP分△ADE所得的兩部分面積之比為2∶7.請求出所有符合條件的點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,請?jiān)?i>x軸上找一點(diǎn)Q,使得△PQC的周長最小,并求出點(diǎn)Q的坐標(biāo).
(1), (2) (3)
【解析】(1)將B(-8,-2)代入得 (1分)
將B(-8,-2)代入得 (2分)
(2)將A(4,m)代入得
① 設(shè)P點(diǎn)存在,連接OP交AE于點(diǎn)F
則
∴,又∵
∴ ∴
設(shè)直線OF的方程為y=kx,將代入得
得或∵P點(diǎn)在第一象限內(nèi)
∴ (5分)
② 設(shè)P點(diǎn)存在,連接OP交AC于點(diǎn)F,過F作FH⊥x軸
則
∴,∴ 代入 得[來源:Z_xx_k.Com]
∴P點(diǎn)不存在 (7分)
(3)點(diǎn)P存在時,,則P點(diǎn)關(guān)于x軸的對稱點(diǎn)為
連接交x軸于點(diǎn)Q.
則的方程為 得 (9分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一次函數(shù)y1=k1x+2與反比例函數(shù)y2=的圖象交于點(diǎn)A (4,m)和B(-8,-2),與y軸交于點(diǎn)C
1.k1=_______,k2=______
2.根據(jù)函數(shù)圖象可知,當(dāng)y1>y2時,x的取值范圍是______.
3.過點(diǎn)A作AD⊥x軸于點(diǎn)D,點(diǎn)P是反比例函數(shù)在第一象限的圖象上一點(diǎn).設(shè)直線OP與線段AD交于點(diǎn)E,當(dāng)S四邊形ODAC:S△CE=3:1時,求點(diǎn)P的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一次函數(shù)y1=ax+2與反比例函數(shù)y2=的圖象交于點(diǎn)A(4,m)和B(-8,-2),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.
(1)求a、k的值;
(2)過點(diǎn)A作AE⊥x軸于點(diǎn)E,若P為反比例函數(shù)圖象的位于第一象限部分上的一點(diǎn),且直線OP分△ADE所得的兩部分面積之比為2∶7.請求出所有符合條件的點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,請?jiān)?i>x軸上找一點(diǎn)Q,使得△PQC的周長最小,并求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于點(diǎn)A﹙-2,-5﹚,C﹙5,n﹚,
(1)求反比例函數(shù)y2=和一次函數(shù)y1=kx+b的表達(dá)式;
(2)觀察圖象,寫出使函數(shù)值的自變量的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆湖南省八年級反比例函數(shù)測試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,一次函數(shù)y1=k1x+2與反比例函數(shù)y2=的圖象交于點(diǎn)A (4,m)和B(-8,-2),與y軸交于點(diǎn)C
1.k1=_______,k2=______
2.根據(jù)函數(shù)圖象可知,當(dāng)y1>y2時,x的取值范圍是______.
3.過點(diǎn)A作AD⊥x軸于點(diǎn)D,點(diǎn)P是反比例函數(shù)在第一象限的圖象上一點(diǎn).設(shè)直線OP與線段AD交于點(diǎn)E,當(dāng)S四邊形ODAC:S△CE=3:1時,求點(diǎn)P的坐標(biāo)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com