如圖,在正方形ABCD中,AB=4,點O在AB上,且OB=1,點P是BC上一動點,連接OP,將線段OP繞點D逆時針旋轉(zhuǎn)90°得到線段OQ.要使點Q恰好落在AD上,則BP的長是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
C
分析:當點Q在AD上時,由OP⊥OQ,利用互余關系可證△OBP≌△QAO,可得BP=AO=AB-OB,可求BP的長.
解答:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,OP=OQ,∠POQ=90°,
∴∠BOP+∠AOQ=90°,又∠BOP+∠BPO=90°,
∴∠BPO=∠AOQ,而∠B=∠A=90°,
∴△OBP≌△QAO,
∴BP=AO=AB-OB=4-1=3.
故選C.
點評:本題考查了旋轉(zhuǎn)的性質(zhì).關鍵是根據(jù)線段的旋轉(zhuǎn)證明全等三角形,利用線段相等將問題進行轉(zhuǎn)化.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網(wǎng),交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內(nèi)部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習冊答案