已知a+=5,則=________.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:數(shù)學教研室 題型:022

  已知a3=-27x3y9z6,則a=________.

 

查看答案和解析>>

科目:初中數(shù)學 來源:初中數(shù)學 三點一測叢書 八年級數(shù)學 下。ńK版課標本) 江蘇版 題型:013

反比例函數(shù)中系數(shù)k的幾何意義

  反比例函數(shù)y=(k≠0)任取一點M(a,b),過M作MA⊥x軸,MB⊥y軸,所得矩形OAMB的面積為S=MA·MB=|b|·|a|=|ab|.又因為b=,故ab=k,所以S=|k|(如圖(1)).

  這就是說,過雙曲線上任意一點作x軸、y軸的垂線,所得的矩形面積為|k|.這就是k的幾何意義,會給解題帶來方便.現(xiàn)舉例如下:

  例1:如(2)圖,已知點P1(x1,y1)和P2(x2,y2)都在反比例函數(shù)y=(k<0)的圖像上,試比較矩形P1AOB與矩形P2COD的面積大小.

  解答:=|k|

  =|k|

  故

  例2:如圖(3),在y=(x>0)的圖像上有三點A、B、C,經(jīng)過三點分別向x軸引垂線,交x軸于A1、B1、C1三點,連結OA、OB、OC,記△OAA1、△OBB1、△OCC1的面積分別為S1、S2、S3,則有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=,

  |k|=

  |k|=

  S1=S2=S3,故選A.

  例3:一個反比例函數(shù)在第三象限的圖像如圖(4)所示,若A是圖像任意一點,AM⊥x軸,垂足為M,O是原點,如果△AOM的面積是3,那么這個反比例函數(shù)的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲線在第三象限

  ∴k>0∴k=6

  ∴所以反比例函數(shù)的解析式為y=

  根據(jù)是述意義,請你解答下題:

  如圖(5),過反比例函數(shù)y=(x>0)的圖像上任意兩點A、B分別作軸和垂線,垂足分別為C、D,連結OA、OB,設AC與OB的交點為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小關系不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:047

我們知道,兩邊及其中一邊的對角分別對應相等的兩個三角形不一定全等.那么在什么情況下,它們會全等

  (1)閱讀與證明:

  對于這兩個三角形均為直角三角形,顯然它們?nèi)龋?/P>

  對于這兩個三角形均為鈍角三角形,可證它們?nèi)?證明略).

  對于這兩個三角形均為銳角三角形,它們也全等,可證明如下:

  已知:△ABC、△A1B1C1均為銳角三角形,AB=A1B1,BC=B1Cl,∠C=∠Cl.

  求證:△ABC≌△A1B1C1.

(請你將下列證明過程補充完整.)

證明:分別過點B,B1作BD⊥CA于D,B1 D1⊥C1 A1于D1.

  則∠BDC=∠B1D1C1=900,

  ∵BC=B1C1,∠C=∠C1,

  ∴△BCD≌△B1C1D1,-

  ∴BD=B1D1.

(2)歸納與敘述:

由(1)可得到一個正確結論,請你寫出這個結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:044

在一次環(huán)保知識測試中,三年級(1)班的兩名學生根據(jù)班級成績(分數(shù)為整數(shù))分別繪制了組距不同的頻數(shù)分布直方圖,如圖所示.

  已知圖(1)從左到右每個小組的頻率分別為004,008,024,032020,012, 其中685765小組的頻數(shù)為12.圖(2)從左到右每個小組的頻數(shù)之比為1247632,請結合條件和頻率分布直方圖回答下列問題:

(1)三年級(1)班參加測試的人數(shù)為多少?

(2)若這次測試成績80分以上(80)為優(yōu)秀,則優(yōu)秀率是多少?

(3)若這次測試成績60分以上(60)為及格,則及格率是多少?

查看答案和解析>>

同步練習冊答案