如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(-1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>-1時,y>0,其中正確結(jié)論的個數(shù)是


  1. A.
    5個
  2. B.
    4個
  3. C.
    3個
  4. D.
    2個
B
分析:由拋物線的對稱軸在y軸右側(cè),可以判定a、b異號,由此確定①正確;
由拋物線與x軸有兩個交點得到b2-4ac>0,又拋物線過點(0,1),得出c=1,由此判定②正確;
由拋物線過點(-1,0),得出a-b+c=0,即a=b-1,由a<0得出b<1;由a<0,及ab<0,得出b>0,由此判定④正確;
由a-b+c=0,及b>0得出a+b+c=2b>0;由b<1,c=1,a<0,得出a+b+c<a+1+1<2,由此判定③正確;
由圖象可知,當(dāng)自變量x的取值范圍在一元二次方程ax2+bx+c=0的兩個根之間時,函數(shù)值y>0,由此判定⑤錯誤.
解答:∵二次函數(shù)y=ax2+bx+c(a≠0)過點(0,1)和(-1,0),
∴c=1,a-b+c=0.
①∵拋物線的對稱軸在y軸右側(cè),∴x=->0,
∴a與b異號,∴ab<0,正確;
②∵拋物線與x軸有兩個不同的交點,∴b2-4ac>0,
∵c=1,∴b2-4a>0,b2>4a,正確;
④∵拋物線開口向下,∴a<0,
∵ab<0,∴b>0.
∵a-b+c=0,c=1,∴a=b-1,
∵a<0,∴b-1<0,b<1,
∴0<b<1,正確;
③∵a-b+c=0,∴a+c=b,
∴a+b+c=2b>0.
∵b<1,c=1,a<0,
∴a+b+c=a+b+1<a+1+1=a+2<0+2=2,
∴0<a+b+c<2,正確;
⑤拋物線y=ax2+bx+c與x軸的一個交點為(-1,0),設(shè)另一個交點為(x,0),則x0>0,
由圖可知,當(dāng)x0>x>-1時,y>0,錯誤;
綜上所述,正確的結(jié)論有①②③④.
故選B.
點評:本題主要考查二次函數(shù)圖象與系數(shù)之間的關(guān)系,不等式的性質(zhì),難度適中.二次函數(shù)y=ax2+bx+c(a≠0),a的符號由拋物線開口方向決定;b的符號由對稱軸的位置及a的符號決定;c的符號由拋物線與y軸交點的位置決定;拋物線與x軸的交點個數(shù),決定了b2-4ac的符號,此外還要注意二次函數(shù)與方程之間的轉(zhuǎn)換.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)的圖象經(jīng)過點D(0,
7
9
3
),且頂點C的橫坐標為4,該圖象在x軸上截得的線段AB的長為6.
(1)求二次函數(shù)的解析式;
(2)在該拋物線的對稱軸上找一點P,使PA+PD最小,求出點P的坐標;
(3)在拋物線上是否存在點Q,使△QAB與△ABC相似?如果存在,求出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,二次函數(shù)圖象的頂點為坐標原點O,且經(jīng)過點A(3,3),一次函數(shù)的圖象經(jīng)過點A和點B(6,0).
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)如果一次函數(shù)圖象與y相交于點C,點D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點E,∠CDO=∠OED,求點D的坐標.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點,與y軸交于點A(0,-3),∠ABC=45°,∠ACB=60°,求這個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程,如圖的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與時間t(月)之間的關(guān)系(即前t個月的利潤總和s與t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問題:
(1)求累積利潤s(萬元)與時間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤可達30萬元;
(3)從第幾個月起公司開始盈利?該月公司所獲利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于兩個點,根據(jù)圖象回答:(1)b
0(填“>”、“<”、“=”);
(2)當(dāng)x滿足
x<-4或x>2
x<-4或x>2
時,ax2+bx+c>0;
(3)當(dāng)x滿足
x<-1
x<-1
時,ax2+bx+c的值隨x增大而減。

查看答案和解析>>

同步練習(xí)冊答案