如圖,在?ABCD中,E是BC邊上的一點(diǎn),連接DE,F(xiàn)是DE上的一點(diǎn),連接AF且∠AFE=∠B.又知AB=2,BC=3,AF=1.5.
(1)求證:△ADF∽△DEC;
(2)求DE的長.

(1)證明:
∵四邊形ABCD是平行四邊形,
∴AD∥BC.
∴∠ADF=∠CED.
∵∠B與∠C互補(bǔ),∠AFE與∠AFD互補(bǔ),而∠AFE=∠B,
∴∠AFD=∠C.
在△ADF和△DEC中,
∵∠ADF=∠CED,∠AFD=∠C,
∴△ADF∽△DEC;
(2)∵△ADF∽△DEC,
=
∵AB=DC,AB=2,
∴DC=2.
∵BC=AD,BC=3,
∴AD=3.已知AF=1.5代入上式解得DE=4.
分析:(1)△ADF和△DEC中,易知∠ADF=∠CED(平行線的內(nèi)錯角),而∠AFD和∠C是等角的補(bǔ)角,由此可判定兩個三角形相似;
(2)由(1)可知△ADF∽△DEC,利用相似的性質(zhì)可得=,已知AF=1.5代入上式解得DE=4.
點(diǎn)評:此題主要考查的是平行四邊形的性質(zhì)、相似三角形的判定和性質(zhì),解題的關(guān)鍵是熟記判定三角形相似的各種方法和各種性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對角線AC、BD相交于點(diǎn)O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關(guān)系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點(diǎn)E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實(shí)數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時,求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點(diǎn)O,連接CE,則△CBE的周長是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習(xí)冊答案