(2006•龍巖)我國(guó)宋朝數(shù)學(xué)家楊輝在他的著作《詳解九章算法》中提出“楊輝三角”(如圖),此圖揭示了(a+b)n(n為非負(fù)整數(shù))展開式的項(xiàng)數(shù)及各項(xiàng)系數(shù)的有關(guān)規(guī)律.
例如:(a+b)=1,它只有一項(xiàng),系數(shù)為1;(a+b)1=a+b,它有兩項(xiàng),系數(shù)分別為1,1,系數(shù)和為2;(a+b)2=a2+2ab+b2,它有三項(xiàng),系數(shù)分別為1,2,1,系數(shù)和為4;(a+b)3=a3+3a2b+3ab2+b3,它有四項(xiàng),系數(shù)分別為1,3,3,1,系數(shù)和為8;

根據(jù)以上規(guī)律,解答下列問題:
(1)(a+b)4展開式共有______項(xiàng),系數(shù)分別為______;
(2)(a+b)n展開式共有______項(xiàng),系數(shù)和為______.

【答案】分析:本題通過閱讀理解尋找規(guī)律,觀察可得(a+b)n(n為非負(fù)整數(shù))展開式的各項(xiàng)系數(shù)的規(guī)律:首尾兩項(xiàng)系數(shù)都是1,中間各項(xiàng)系數(shù)等于(a+b)n-1相鄰兩項(xiàng)的系數(shù)和.因此可得(a+b)4的各項(xiàng)系數(shù)分別為1、(1+3)、(3+3)、(3+1)、1,即:1、4、6、4、1.
解答:解:(1)根據(jù)題意知,(a+b)4的展開后,共有5項(xiàng),
各項(xiàng)系數(shù)分別為1、(1+3)、(3+3)、(3+1)、1,
即:1、4、6、4、1;

(2)當(dāng)a=b=1時(shí),(a+b)n=2n
故答案為:(1)5,1,4,6,4,1;(2)n+1,2n
點(diǎn)評(píng):本題考查了完全平方公式,關(guān)鍵在于觀察、分析已知數(shù)據(jù),尋找它們之間的相互聯(lián)系,探尋其規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、2006年是我國(guó)公民義務(wù)植樹運(yùn)動(dòng)開展25周年,25年來我市累計(jì)植樹154 000 000株,這個(gè)數(shù)字可以用科學(xué)記數(shù)法表示為
1.54×108
株.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

央行2007年4月12日公布的數(shù)據(jù)顯示,2007年3月末我國(guó)外匯儲(chǔ)備余額為12020億美元,2006年同期我國(guó)外匯儲(chǔ)備余額為8751億美元,則同比增長(zhǎng)為(精確到0.01%)( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2006•河北區(qū)一模)國(guó)家統(tǒng)計(jì)局2006年公布我國(guó)全國(guó)總?cè)丝跒?30628萬人,將130628萬人用科學(xué)記數(shù)法表示正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年福建省龍巖市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•龍巖)我國(guó)宋朝數(shù)學(xué)家楊輝在他的著作《詳解九章算法》中提出“楊輝三角”(如圖),此圖揭示了(a+b)n(n為非負(fù)整數(shù))展開式的項(xiàng)數(shù)及各項(xiàng)系數(shù)的有關(guān)規(guī)律.
例如:(a+b)=1,它只有一項(xiàng),系數(shù)為1;(a+b)1=a+b,它有兩項(xiàng),系數(shù)分別為1,1,系數(shù)和為2;(a+b)2=a2+2ab+b2,它有三項(xiàng),系數(shù)分別為1,2,1,系數(shù)和為4;(a+b)3=a3+3a2b+3ab2+b3,它有四項(xiàng),系數(shù)分別為1,3,3,1,系數(shù)和為8;

根據(jù)以上規(guī)律,解答下列問題:
(1)(a+b)4展開式共有______項(xiàng),系數(shù)分別為______;
(2)(a+b)n展開式共有______項(xiàng),系數(shù)和為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案