已知拋物線的解析式y(tǒng)=ax2+bx+c滿足下列四個(gè)條件:abc=0,a+b+c=3,ab+bc+ac=-4,a<b<c.

(1)求這條拋物線的解析式;

(2)設(shè)該拋物線與x軸的兩個(gè)交點(diǎn)分別為A,B(A在B的左邊),與y軸的交點(diǎn)為C,P是拋物線上第一象限內(nèi)的點(diǎn),AP交y軸于D,OD=1.5,試比較S△AOD與S△DPC的大小.

答案:
解析:

  

  小結(jié):本題通過(guò)二次函數(shù)各項(xiàng)系數(shù)之間的關(guān)系來(lái)確定二次函數(shù)的解析式,在解題過(guò)程中,多解問(wèn)題是否能處理得當(dāng)是解決問(wèn)題的關(guān)鍵.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、已知拋物線的解析式為y=2(x-1)2+4,則這條拋物線的頂點(diǎn)坐標(biāo)是
(1,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,拋物線y=-x2+mx+n(m、n是常數(shù))與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過(guò)B、C兩點(diǎn)的直線的方程是y=x+2.
(1)求已知拋物線的解析式;
(2)將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△A′B′C′,求點(diǎn)C′的坐標(biāo);
(3)P是拋物線上的動(dòng)點(diǎn),當(dāng)P在拋物線上從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C,求P點(diǎn)縱坐標(biāo)的取值范圍.
(參考公式:拋物線y=ax2+bx+c(其中a≠0)的頂點(diǎn)坐標(biāo)為(-
b
2a
,
4ac-b2
4a
))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的解析式為y=-(x-3)2+1,則它的頂點(diǎn)坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的解析式是y=-3(x+1)2-2,則下列說(shuō)法正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的解析式為y=-
12
x2+4x-6

(1)求拋物線的頂點(diǎn)坐標(biāo);
(2)求出拋物線與x軸的交點(diǎn)坐標(biāo);
(3)當(dāng)x取何值時(shí)y>0?

查看答案和解析>>

同步練習(xí)冊(cè)答案