【題目】如圖,點(diǎn)E是ABCD的邊AD的中點(diǎn),BE與AC相交于點(diǎn)P,則SAPE:SBCP=

【答案】1:4
【解析】解:如圖,∵點(diǎn)E是ABCD的邊AD的中點(diǎn), ∴ =
∵四邊形ABCD是平行四邊形,
∴AD∥BC,且AD=BC,
∴△AEP∽△CBP,
= = ,
∴SAPE:SBCP=1:4.
故答案是:1:4.

【考點(diǎn)精析】通過靈活運(yùn)用平行四邊形的性質(zhì)和相似三角形的判定與性質(zhì),掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的個(gè)數(shù)是( )
①若代數(shù)式有意義,則x的取值范圍為x≤1且x≠0.
②我市生態(tài)旅游初步形成規(guī)模,2012年全年生態(tài)旅游收入為302 600 000元,保留三個(gè)有效數(shù)字用科學(xué)記數(shù)法表示為3.03×108元.
③若反比例函數(shù)(m為常數(shù)),當(dāng)x>0時(shí),y隨x增大而增大,則一次函數(shù)y=﹣2x+m的圖象一定不經(jīng)過第一象限.
④若函數(shù)的圖象關(guān)于y軸對(duì)稱,則函數(shù)稱為偶函數(shù),下列三個(gè)函數(shù):y=3,y=2x+1,y=x2中偶函數(shù)的個(gè)數(shù)為2個(gè).
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一條排水管的截面如圖所示.已知排水管的半徑OB=10,水面寬AB=16.求截面圓心O到水面的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,從下列條件:①AB=BC,②∠ABC=90°, ③AC=BD,④AC⊥BD中,再選兩個(gè)做為補(bǔ)充,使ABCD變?yōu)檎叫危旅嫠姆N組
合,錯(cuò)誤的是(

A.①②
B.①③
C.②③
D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小華為了測(cè)量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達(dá)坡頂D處.已知斜坡的坡角為15°.小華的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(計(jì)算結(jié)果精確到1m) (參考數(shù)據(jù):sin15°= ,cos15°= ,tan15°=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B兩個(gè)轉(zhuǎn)盤分別被平均分成三個(gè)、四個(gè)扇形,分別轉(zhuǎn)動(dòng)A盤、B盤各一次.轉(zhuǎn)動(dòng)過程中,指針保持不動(dòng),如果指針恰好指在分割線上,則重轉(zhuǎn)一次,直到指針指向一個(gè)數(shù)字所在的區(qū)域?yàn)橹梗?qǐng)用列表或畫樹狀圖的方法,求兩個(gè)轉(zhuǎn)盤停止后指針?biāo)竻^(qū)域內(nèi)的數(shù)字之積小于6的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+c的部分圖象如圖所示,若y<0,則x的取值范圍是(
A.﹣1<x<4
B.x<﹣1或x>3
C.x<﹣1或x>4
D.﹣1<x<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=ax2+bx+2的圖象經(jīng)過點(diǎn)A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)若點(diǎn)Q(m,m﹣1)是拋物線上位于第一象限內(nèi)的點(diǎn),P是線段AB上的一個(gè)動(dòng)點(diǎn)(不與A、B重合),經(jīng)過點(diǎn)P分別作PD∥BQ交AQ于點(diǎn)D,PE∥AQ交BQ于點(diǎn)E. ①判斷四邊形PDQE的形狀;并說明理由;
②連接DE,求出線段DE的長度范圍;
③如圖2,在拋物線上是否存在一點(diǎn)F,使得以P、F、A、C為頂點(diǎn)的四邊形為平行四邊形?若存在,求出點(diǎn)F和點(diǎn)P坐標(biāo);若不存在,說明理由.
(3)當(dāng)r=2 時(shí),在P1(0,2),P2(﹣2,4),P3(4 ,2),P4(0,2﹣2 )中,求可以成為正方形ABCD的“等距圓”的圓心的坐標(biāo)?
(4)若點(diǎn)P坐標(biāo)為(﹣3,6),則當(dāng)⊙P的半徑r為多長時(shí),⊙P是正方形ABCD的“等距圓”.試判斷此時(shí)⊙P與直線AC的位置關(guān)系?并說明理由.
(5)如圖2,在正方形ABCD所在平面直角坐標(biāo)系xOy中,正方形EFGH的頂點(diǎn)F的坐標(biāo)為(6,2),頂點(diǎn)E、H在y軸上,且點(diǎn)H在點(diǎn)E的上方.若⊙P同時(shí)為上述兩個(gè)正方形的“等距圓”,且與BC所在直線相切,求⊙P的圓心P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中,屬于真命題的共有( ) ①相等的圓心角所對(duì)的弧相等 ②若 = ,則a、b都是非負(fù)實(shí)數(shù)
③相似的兩個(gè)圖形一定是位似圖形 ④三角形的內(nèi)心到這個(gè)三角形三邊的距離相等.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案