【題目】用公式法解下列方程.

(1)3(x2+1)-7x=0;’

(2)4x2-3x-5=x-2.

【答案】(1)x1,x2.

(2) x1,x2=-.

【解析】試題分析:本題考查用公式法解一元二次方程,

先將方程整理成一般式得: 3x2-7x+3=0,

因為a=3,b=-7,c=3, 所以

代入公式求解得: x,

先將方程整理成一般式得: 4x2-4x3=0,

因為a=4,b=-4,c=-3, 所以

代入公式求解得:,=-.

(1)3(x2+1)-7x=0,3x2-7x+3=0,

∴b2-4ac=(-7)2-4×3×3=13,

∴x= .∴x1,x2.

(2)4x2-3x-5=x-2,4x2-4x-3=0,

∴b2-4ac=(-4)2-4×4×(-3)=64,∴x=,

∴x1,x2=-.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師布置了兩道解方程的作業(yè)題:

(1)選用合適的方法解方程:x+1)(x+2=6;

(2)用配方法解方程:2x24x50.

以下是小明同學(xué)的作業(yè):

(1)解:由x+1)(x+2=6,

(2)解:由2x24x50,

x12x23,

2x24x5,

所以x11,x21.

x22x,

x22x11,

(x+1)2

x1±

x1=-1,x2=-1.

請你幫小明檢查他的作業(yè)是否正確,把不正確的改正過來

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,C是⊙O上一點,OD⊥BC于點D,過點C作⊙O的切線,交OD的延長線于點E,連接BE.
(1)求證:BE與⊙O相切;
(2)連接AD并延長交BE于點F,若OB=9,sin∠ABC= ,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:6x4-35x3+62x2-35x+6=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了豐富學(xué)生的校園體育鍛煉生活,決定根據(jù)學(xué)生的興趣愛好采購一批體育用品供學(xué)生課后鍛煉使用,因此學(xué)校隨機抽取了部分同學(xué)就興趣愛好進行調(diào)查,將收集的數(shù)據(jù)整理并繪制成下列兩幅統(tǒng)計圖,請根據(jù)圖中的信息,完成下列問題:
(1)設(shè)學(xué)校這次調(diào)查共抽取了n名學(xué)生,直接寫出n的值;
(2)請你補全條形統(tǒng)計圖;
(3)設(shè)該校共有學(xué)生1200名,請你估計該校有多少名學(xué)生喜歡跳繩?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大雙,小雙的媽媽申購到一張北京奧運會的門票,兄弟倆決定分別用標(biāo)有數(shù)字且除數(shù)字以外沒有其它任何區(qū)別的小球,各自設(shè)計一種游戲確定誰去.

大雙:A袋中放著分別標(biāo)有數(shù)字1,2,3的三個小球,B袋中放著分別標(biāo)有數(shù)字4,5的兩個小球,且都已各自攪勻,小雙蒙上眼睛從兩個口袋中各取出1個小球,若兩個小球上的數(shù)字之積為偶數(shù),則大雙得到門票;若積為奇數(shù),則小雙得到門票.

小雙:口袋中放著分別標(biāo)有數(shù)字1,2,3的三個小球,且已攪勻,大雙,小雙各蒙上眼睛有放回地摸1次,大雙摸到偶數(shù)就記2分,摸到奇數(shù)記0分;小雙摸到奇數(shù)就記1分,摸到偶數(shù)記0分,積分多的就得到門票.(若積分相同,則重復(fù)第二次.)

(1)大雙設(shè)計的游戲方案對雙方是否公平?請你運用列表或樹狀圖說明理由;

(2)小雙設(shè)計的游戲方案對雙方是否公平?不必說理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于20.55與2.055這兩個近似數(shù),下列說法中,正確的是( 。.
A.它們的有效數(shù)字與精確位數(shù)都不相同
B.它們的有效數(shù)字與精確位數(shù)都相同
C.它們的精確位數(shù)不相同,有效數(shù)字相同
D.它們的有效數(shù)字不相同,精確位數(shù)相同

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A的坐標(biāo)是(1,0),點B的坐標(biāo)是(9,0),以AB為直徑作O,交y軸的負(fù)半軸于點C,連接AC、BC,過A、B、C三點作拋物線.

(1)求拋物線的解析式;

(2)點E是AC延長線上一點,BCE的平分線CD交O于點D,連結(jié)BD,求直線BD的解析式;

(3)在(2)的條件下,拋物線上是否存在點P,使得PDB=CBD?如果存在,請求出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣2x2+4的頂點坐標(biāo)為(
A.(4,0)
B.(0,4)
C.(4,2)
D.(4,﹣2)

查看答案和解析>>

同步練習(xí)冊答案