勾股定理是初等幾何中的一個基本定理.這個定理有十分悠久的歷史,兩千多年來,人們對勾股定理的證明頗感興趣,我國古代三國時期吳國的數(shù)學家趙爽創(chuàng)造的弦圖,是最早證明勾股定理的方法,所謂弦圖是指在正方形的每一邊上各取一個點,再連接四點構成一個正方形,它可以驗證勾股定理.在如圖的弦圖中,已知:正方形EFGH的頂點E、F、G、H分別在正方形ABCD的邊DA、AB、BC、CD上.若正方形ABCD的面積=16,AE=1;則正方形EFGH的面積=________.

10
分析:先判斷△AEF≌△DHE,得出AF=DE,這樣可求出AE、EF的長度,利用勾股定理可求出正方形EFGH的面積.
解答:∵四邊形EFGH是正方形,
∴EH=FE,∠FEH=90°,
∵∠AEF+∠AFE=90°,∠AEF+∠DEH=90°,
∴∠AFE=∠DEH,
∵在△AEF和△DHE中,
,
∴△AEF≌△DHE,
∴AF=DE,
∵正方形ABCD的面積為16,
∴AB=BC=CD=DE=4,
∴AF=DE=AD-AE=4-1=3,
在Rt△AEF中,EF==,
故正方形EFGH的面積=×=10.
故答案為:10.
點評:本題考查了勾股定理的知識,屬于基礎題,解答本題的關鍵在于通過全等三角形的判定得出AF=DE,求出AF的長度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

勾股定理是初等幾何中的一個基本定理.這個定理有十分悠久的歷史,兩千多年來,人們對勾股定理的證明頗感興趣,我國古代三國時期吳國的數(shù)學家趙爽創(chuàng)造的弦圖,是最早證明勾股定理的方法,所謂弦圖是指在正方形的每一邊上各取一個點,再連接四點構成一個正方形,它可以驗證勾股定理.在如圖的弦圖中,已知:正方形EFGH的頂點E、F、G、H分別在正方形ABCD的邊DA、AB、BC、CD上.若正方形ABCD的面積=16,AE=1;則正方形EFGH的面積=
10
10

查看答案和解析>>

科目:初中數(shù)學 來源:2012年浙江省溫州市平陽縣中考數(shù)學基礎訓練卷(四)(解析版) 題型:填空題

勾股定理是初等幾何中的一個基本定理.這個定理有十分悠久的歷史,兩千多年來,人們對勾股定理的證明頗感興趣,我國古代三國時期吳國的數(shù)學家趙爽創(chuàng)造的弦圖,是最早證明勾股定理的方法,所謂弦圖是指在正方形的每一邊上各取一個點,再連接四點構成一個正方形,它可以驗證勾股定理.在如圖的弦圖中,已知:正方形EFGH的頂點E、F、G、H分別在正方形ABCD的邊DA、AB、BC、CD上.若正方形ABCD的面積=16,AE=1;則正方形EFGH的面積=   

查看答案和解析>>

同步練習冊答案