如圖,已知在扇形OAB中,∠AOB=90°,半徑OA=10,正方形FCDE的四個(gè)頂點(diǎn)分別在和半徑OA、OB上,則CD的長(zhǎng)為     

 

 

【答案】

2

【解析】

試題分析:過(guò)點(diǎn)O作OH⊥CF于點(diǎn)H,交DE于點(diǎn)K,連接OF,由垂徑定理可知CH=HF,因?yàn)樗倪呅蜦CDE是正方形故OH⊥DE,DK=EK,所以△OEK是等腰直角三角形,OK=EK,設(shè)CD=x,則HK=x,HF=OK=EK=,在Rt△OGF中根據(jù)勾股定理可得出x的值,進(jìn)而得出結(jié)論.

試題解析:過(guò)點(diǎn)O作OH⊥CF于點(diǎn)H,交DE于點(diǎn)K,連接OF,如圖:

∵OH過(guò)圓心,

∴CH=HF,

∵四邊形FCDE是正方形,

∴OH⊥DE,DK=EK,

∴△OEK是等腰直角三角形,OK=EK,

設(shè)CD=x,則HK=x,HF=OK=EK=

在Rt△OGF中,OH2+HF2=OF2,即(x+2+(2=102,解得x=2

即CD的長(zhǎng)為2

故答案為:2

考點(diǎn): 1.垂徑定理;2.勾股定理;3.正方形的性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,水平地面上有一面積為
15
2
πcm2
的扇形AOB,半徑OA=3cm,且OA與地面垂直.在沒(méi)有滑動(dòng)的情況下,將扇形向右滾動(dòng)至與三角塊BDE接觸為止,此時(shí),扇形與地面的接觸點(diǎn)為C,已知∠BCD=30°,則O點(diǎn)移動(dòng)的距離為(  )
精英家教網(wǎng)
A、3πcm
B、4πcm
C、
9
2
πcm
D、5πcm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法
①如圖1,扇形OAB的圓心角∠AOB=90°,OA=6,點(diǎn)C是
AB
上異于A、B的動(dòng)點(diǎn),過(guò)點(diǎn)C作CD⊥OA于D,作CE⊥OB于E,連接DE,點(diǎn)G在線(xiàn)段DE上,且DG=
1
3
DE
,連接CG.當(dāng)點(diǎn)C在
AB
上運(yùn)動(dòng)時(shí),在CD、CG、DG中,長(zhǎng)度不變的是DG;
②如圖2,正方形紙片ABCD的邊長(zhǎng)為8,⊙O的半徑為2,圓心O在正方形的中心上,將紙片按圖示方式折疊,折疊后點(diǎn)A于點(diǎn)H重合,且EH切⊙O于點(diǎn)H,延長(zhǎng)FH交CD邊于點(diǎn)G,則HG的長(zhǎng)為
19
3
;
③已知Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,則其內(nèi)心和外心之間的距離是
5
cm

其中正確的有
①②
①②
 (請(qǐng)寫(xiě)序號(hào),少選,錯(cuò)選均不得分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

已知圓心角都是90°的扇形OAB與扇形OCD,如圖所示那樣疊放在一起,連接AC,BD.

(1)求證△AOC≌△BOD;

(2)若OA=3cm,OC=1cm,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年福建省龍巖市一中對(duì)新羅區(qū)錄取保送生加試數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,水平地面上有一面積為的扇形AOB,半徑OA=3cm,且OA與地面垂直.在沒(méi)有滑動(dòng)的情況下,將扇形向右滾動(dòng)至與三角塊BDE接觸為止,此時(shí),扇形與地面的接觸點(diǎn)為C,已知∠BCD=30°,則O點(diǎn)移動(dòng)的距離為( )

A.3πcm
B.4πcm
C.
D.5πcm

查看答案和解析>>

同步練習(xí)冊(cè)答案