身高1.65米的兵兵在建筑物前放風(fēng)箏,風(fēng)箏不小心掛在了樹上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點(diǎn)B處,風(fēng)箏掛在建筑物上方的樹枝點(diǎn)G處(點(diǎn)G在FE的延長(zhǎng)線上).經(jīng)測(cè)量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風(fēng)箏所在點(diǎn)G與建筑物頂點(diǎn)D及風(fēng)箏線在手中的點(diǎn)A在同一條直線上,點(diǎn)A距地面的高度AB=1.4米,風(fēng)箏線與水平線夾角為37°.
(1)求風(fēng)箏距地面的高度GF;
(2)在建筑物后面有長(zhǎng)5米的梯子MN,梯腳M在距墻3米處固定擺放,通過計(jì)算說明:若兵兵充分利用梯子和一根米長(zhǎng)的竹竿能否觸到掛在樹上的風(fēng)箏?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(1)10.4(米) (2)能觸到掛在樹上的風(fēng)箏
【解析】
試題分析:(1)過A作AP⊥GF于點(diǎn)P.在Rt△PAG中利用三角函數(shù)求得GP的長(zhǎng),從而求得GF的長(zhǎng)。
(2)在Rt△MNF中,利用勾股定理求得NF的長(zhǎng)度,NF的長(zhǎng)加上身高再加上竹竿長(zhǎng),與GF比較大小即可。
解:(1)過A作AP⊥GF于點(diǎn)P,
則AP=BF=12,AB=PF=1.4,∠GAP=37°,
在Rt△PAG中,,
∴GP=AP•tan37°≈12×0.75=9(米)。
∴GF=9+1.4≈10.4(米)。
(2)由題意可知MN=5,MF=3,
∴在直角△MNF中,。
∵10.4﹣5﹣1.65=3.75<4,∴能觸到掛在樹上的風(fēng)箏。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年遼寧省沈陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
身高1.65米的兵兵在建筑物前放風(fēng)箏,風(fēng)箏不小心掛在了樹上,在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點(diǎn)B處,風(fēng)箏掛在建筑物上方的樹枝點(diǎn)G處(點(diǎn)G在FE的延長(zhǎng)線上),經(jīng)測(cè)量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風(fēng)箏所在點(diǎn)G與建筑物頂點(diǎn)D及風(fēng)箏線在手中的點(diǎn)A在同一條直線上,點(diǎn)A據(jù)地面的高度AB=1.4米,風(fēng)箏線與水平線夾角為37°。
(1)求風(fēng)箏據(jù)地面的告訴GF;
(2)在建筑物后面有長(zhǎng)5米的梯子MN,梯腳M在距離3米處固定擺放,通過計(jì)算說明;若兵兵充分利用梯子和一根5米長(zhǎng)的竹竿能否觸到掛在樹上的風(fēng)箏?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com