83、給出下面四個說法:①三角形三個內(nèi)角的和為360°;②三角形一個外角大于它的任何一個內(nèi)角;③三角形一個外角等于它任意兩個內(nèi)角的和;④三角形的外角和等于360°.其中正確說法的個數(shù)為( 。
分析:根據(jù)三角形的內(nèi)角和為180°,外角和為360°的知識解答即可;三角形分銳角三角形、直角三角形和鈍角三角形,為鈍角三角形時,內(nèi)角大于外角;三角形一個外角等于與它不相鄰的兩個內(nèi)角的和;
解答:解:根據(jù)三角形的內(nèi)角和為180°,外角和為360°;可知①錯誤;④正確;
為鈍角三角形時,鈍角大于它的外角;故②錯誤;
根據(jù)三角形一個外角等于與它不相鄰的兩個內(nèi)角的和;可知③錯誤;
綜上可知:只有④正確,即正確的個數(shù)只有1個.
故選B.
點評:本題主要考查了三角形的外角的性質(zhì)和內(nèi)角和定理,具體要求是要學(xué)生要理解概念和對定理的熟練應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等腰三角形與正三角形的形狀有著差異,我們把它與正三角形的接近程度稱為等腰三角形的“正度”,在研究“正度”時,應(yīng)符合下面四個條件:①“正度”的值是非負數(shù);②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.
可用|sinα-
3
2
|
表示等腰三角形的“正度”,|sinα-
3
2
|
的值越小,α越接近60°,表示等腰三角形越接近正三角形,且當(dāng)兩個等腰三角形相似時,它們的底角相等,顯然,它們的“正度”|sinα-
3
2
|
也相等,當(dāng)α=60°時,|sinα-
3
2
|=0

而如果用
a
b
表示等腰三角形的“正度”,就不符合要求,因為此時正三角形的正度是1!
解答下列問題:
甲同學(xué)認為:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同學(xué)認為:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
精英家教網(wǎng)(1)他們的說法合理嗎?為什么?
(2)對你認為不合理的方案加以改進,使其合理;
(3)請你再給出一種衡量等腰三角形“正度”的合理的表達式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

給出下面四個說法:①三角形三個內(nèi)角的和為360°;②三角形一個外角大于它的任何一個內(nèi)角;③三角形一個外角等于它任意兩個內(nèi)角的和;④三角形的外角和等于360°.其中正確說法的個數(shù)為


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,等腰三角形與正三角形的形狀有著差異,我們把它與正三角形的接近程度稱為等腰三角形的“正度”,在研究“正度”時,應(yīng)符合下面四個條件:①“正度”的值是非負數(shù);②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.
可用數(shù)學(xué)公式表示等腰三角形的“正度”,數(shù)學(xué)公式的值越小,α越接近60°,表示等腰三角形越接近正三角形,且當(dāng)兩個等腰三角形相似時,它們的底角相等,顯然,它們的“正度”數(shù)學(xué)公式也相等,當(dāng)α=60°時,數(shù)學(xué)公式
而如果用數(shù)學(xué)公式表示等腰三角形的“正度”,就不符合要求,因為此時正三角形的正度是1!
解答下列問題:
甲同學(xué)認為:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同學(xué)認為:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
(1)他們的說法合理嗎?為什么?
(2)對你認為不合理的方案加以改進,使其合理;
(3)請你再給出一種衡量等腰三角形“正度”的合理的表達式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河北省保定市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,等腰三角形與正三角形的形狀有著差異,我們把它與正三角形的接近程度稱為等腰三角形的“正度”,在研究“正度”時,應(yīng)符合下面四個條件:①“正度”的值是非負數(shù);②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.
可用表示等腰三角形的“正度”,的值越小,α越接近60°,表示等腰三角形越接近正三角形,且當(dāng)兩個等腰三角形相似時,它們的底角相等,顯然,它們的“正度”也相等,當(dāng)α=60°時,
而如果用表示等腰三角形的“正度”,就不符合要求,因為此時正三角形的正度是1!
解答下列問題:
甲同學(xué)認為:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同學(xué)認為:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
(1)他們的說法合理嗎?為什么?
(2)對你認為不合理的方案加以改進,使其合理;
(3)請你再給出一種衡量等腰三角形“正度”的合理的表達式,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案