已知,P為等邊三角形內(nèi)一點,且BP=3,PC=4,將BP繞點B順時針旋轉(zhuǎn)60°至BP’的位置。

(1)試判斷△BPP’的形狀,并說明理由;

(2)若,求PA。

 


解:(1)△BPP’是等邊三角形                              

                      證明略                                         

                (2)                                

                         PA=5                                     

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、已知,△ABC為等邊三角形,點D為直線BC上一動點(點D不與B、C重合).以AD為邊作菱形ADEF,使∠DAF=60°,連接CF.
(1)如圖1,當(dāng)點D在邊BC上時,
求證:∠ADB=∠AFC;②請直接判斷結(jié)論∠AFC=∠ACB+∠DAC是否成立;
(2)如圖2,當(dāng)點D在邊BC的延長線上時,其他條件不變,結(jié)論∠AFC=∠ACB+∠DAC是否成立?請寫出∠AFC、∠ACB、∠DAC之間存在的數(shù)量關(guān)系,并寫出證明過程;
(3)如圖3,當(dāng)點D在邊CB的延長線上時,且點A、F分別在直線BC的異側(cè),其他條件不變,請補(bǔ)全圖形,并直接寫出∠AFC、∠ACB、∠DAC之間存在的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

說理填空題:如圖,EC=EB,∠CDA=120°,DF∥BE,且DF平分∠CDA,試說明AD與BC平行的理由.
精英家教網(wǎng)解:∵DF平分∠CDA,∠CDA=120°(已知)
∴∠FDC=
12
∠=
 
,
∵DF∥BE,(已知),
∴∠FDC=∠
 
=
 
°
 

又∵EC=EB,(已知)
∴△BCE為等邊三角形.
 

∴∠C=°
 
,
∵∠CDA=120°(已知)
∴∠C+∠CDA=180°
∴AD∥BC
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:△ABC為等邊三角形,邊長為2cm,求等邊△ABC的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:△ABC為等邊三角形,點M是射線BC上任意一點,點N是射線CA上任意一點,且BM=CN,直線BN與AM相交于Q點
(1)觀察圖中是否有全等三角形?若有,直接寫出:
△ABM≌△BCN
△ABM≌△BCN
;(寫出一對即可)
(2)求∠BQM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:△ABC為等邊三角形,D,E,F(xiàn)分別是AB,BC,CA上的點,且AD:DB=BE:EC=CF:FA.△ABC∽
△DEF
△DEF

查看答案和解析>>

同步練習(xí)冊答案