解:(1)∵
,
=
[x
12+
-2x
1+x
22+
-2
+…+x
n2+
-2x
n],
=
(x
12+x
22+…+x
n2)+
(
+
+…+
)+
(-2x
1-2
-…-2x
n],
=
(x
12+x
22+…+x
n2)+
+
(-2x
1-2
-…-2x
n],
=
(x
12+x
22+…+x
n2)+
-2
(x
1+x
2+…+x
n],
=
(x
12+x
22+…+x
n2)-
,
∴
;
當(dāng)x
1=x
2=…=x
n=
時(shí),
s
2=
-
=0,
∴此時(shí)方差s
2取最小值0;
(2)設(shè)數(shù)據(jù)-x,(y-1),x-y的平均數(shù)為:
=
[(-x)+(y-1)+(x-y)],
=-
,
方差s
2=
[x
2+(y-1)
2+(x-y)
2]-(
)
2=
-(-
)
2,
當(dāng)且僅當(dāng)-x=y-1=x-y=
=-
時(shí),
s
2=0,
此時(shí)x=
,y=
.
分析:(1)根據(jù)方差的定義的公式展開(kāi),進(jìn)行整理得出命題的正確性;
(2)結(jié)合方差s
2=
[x
2+(y-1)
2+(x-y)
2]-(
)
2=
-(-
)
2,當(dāng)且僅當(dāng)-x=y-1=x-y=
=-
時(shí),求出即可.
點(diǎn)評(píng):此題主要考查了方差公式的證明以及綜合應(yīng)用,正確的將公式變形是解決問(wèn)題的關(guān)鍵.