(2012•天津)“三等分任意角”是數(shù)學史上一個著名問題.已知一個角∠MAN,設(shè)∠α=
13
∠MAN.
(Ⅰ)當∠MAN=69°時,∠α的大小為
23
23
(度);
(Ⅱ)如圖,將∠MAN放置在每個小正方形的邊長為1cm的網(wǎng)格中,角的一邊AM與水平方向的網(wǎng)格線平行,另一邊AN經(jīng)過格點B,且AB=2.5cm.現(xiàn)要求只能使用帶刻度的直尺,請你在圖中作出∠α,并簡要說明做法(不要求證明)
如圖,讓直尺有刻度一邊過點A,設(shè)該邊與過點B的豎直方向的網(wǎng)格線交于點C,與過點B水平方向的網(wǎng)格線交于點D,保持直尺有刻度的一邊過點A,調(diào)整點C、D的位置,使CD=5cm,畫射線AD,此時∠MAD即為所求的∠α.
如圖,讓直尺有刻度一邊過點A,設(shè)該邊與過點B的豎直方向的網(wǎng)格線交于點C,與過點B水平方向的網(wǎng)格線交于點D,保持直尺有刻度的一邊過點A,調(diào)整點C、D的位置,使CD=5cm,畫射線AD,此時∠MAD即為所求的∠α.
分析:(Ⅰ)根據(jù)題意,用69°乘以
1
3
,計算即可得解;
(Ⅱ)利用網(wǎng)格結(jié)構(gòu),作以點B為直角頂點的直角三角形,并且使斜邊所在的直線過點A,且斜邊的長度為5,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得斜邊上的中線等于AB的長度,再結(jié)合三角形的外角性質(zhì)可知,∠BAD=2∠BDC,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠BDC=∠MAD,從而得到∠MAD=
1
3
∠MAN.
解答:解:(Ⅰ)
1
3
×69°=23°;

(Ⅱ)如圖,讓直尺有刻度一邊過點A,設(shè)該邊與過點B的豎直方向的網(wǎng)格線交于點C,與過點B水平方向的網(wǎng)格線交于點D,保持直尺有刻度的一邊過點A,調(diào)整點C、D的位置,使CD=5cm,畫射線AD,此時∠MAD即為所求的∠α.
點評:本題考查了應用與設(shè)計作圖,主要利用了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),使作出的直角三角形斜邊上的中線恰好把三角形分成兩個等腰三角形是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•天津)已知拋物線y=ax2+bx+c(0<2a<b)的頂點為P(x0,y0),點A(1,yA)、B(0,yB)、C(-1,yC)在該拋物線上.
(Ⅰ)當a=1,b=4,c=10時,
①求頂點P的坐標;
②求
yA
yB-yC
的值;
(Ⅱ)當y0≥0恒成立時,求
yA
yB-yC
的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•天津)據(jù)某域名統(tǒng)計機構(gòu)公布的數(shù)據(jù)顯示,截至2012年5月21日,我國“.NET”域名注冊量約為560000個,居全球第三位,將560000用科學記數(shù)法表示應為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•天津)將正比例函數(shù)y=-6x的圖象向上平移,則平移后所得圖象對應的函數(shù)解析式可以是
y=-6x+1(答案不唯一)
y=-6x+1(答案不唯一)
(寫出一個即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•天津)如圖,△ABC是⊙O的內(nèi)接三角形,AB為⊙O的直徑,點D為⊙O上一點,若∠CAB=55°,則∠ADC的大小為
35
35
(度).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•天津)已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經(jīng)過點O、P折疊該紙片,得點B′和折痕OP.設(shè)BP=t.

(Ⅰ)如圖①,當∠BOP=30°時,求點P的坐標;
(Ⅱ)如圖②,經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的條件下,當點C′恰好落在邊OA上時,求點P的坐標(直接寫出結(jié)果即可).

查看答案和解析>>

同步練習冊答案