1、探究
(1) 在圖1中,已知線段AB,CD.
①若A (-1,0), B (3,0),則AB=__________;
②若C (-2,2), D (-2,-1),則CD=__________;
(2)在圖2中,已知線段AB的端點(diǎn)坐標(biāo)為A(1,1) ,B(4,3),請(qǐng)求出圖中線段AB的長(zhǎng)度.
2、歸納
無論線段AB處于直角坐標(biāo)系中的哪個(gè)位置,當(dāng)其端點(diǎn)坐標(biāo)為A(a,b),B(c,d),請(qǐng)用a、b、c、d表示線段AB的長(zhǎng)度(不必證明)。
(1)AB=4 CD=3
(2)AB=
(3)AB= .
解析試題分析:(1)利用A、B兩點(diǎn)的橫坐標(biāo)的差的絕對(duì)值求出AB的距離;利用C、D兩點(diǎn)的縱坐標(biāo)的差的絕對(duì)值求出CD的距離;
(2)過A點(diǎn)作x軸的平行線,過B點(diǎn)作x軸的垂直線,兩線相交C點(diǎn),那么三角形ABC是直角三角形,先求出AC、BC長(zhǎng),然后利用勾股定理求出AB長(zhǎng);
(3)同(2).
考點(diǎn):直角坐標(biāo)系;勾股定理.
點(diǎn)評(píng):本題要求利用數(shù)形結(jié)合的思想求出直角坐標(biāo)系中的兩點(diǎn)的距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆安徽省南陵縣惠民中學(xué)九年級(jí)上學(xué)期第二次月考數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖1至圖4中,兩平行線AB、CD間的距離均為6,點(diǎn)M為AB上一定點(diǎn).
思考:
如圖1,圓心為0的半圓形紙片在AB,CD之間(包括AB,CD),其直徑MN在AB上,MN=8,點(diǎn)P為半圓上一點(diǎn),設(shè)∠MOP=α。
當(dāng)α= 度時(shí),點(diǎn)P到CD的距離最小,最小值為 。
探究一:
在圖1的基礎(chǔ)上,以點(diǎn)M為旋轉(zhuǎn)中心,在AB,CD 之間順時(shí)針旋轉(zhuǎn)該半圓形紙片,直到不能再轉(zhuǎn)動(dòng)為止,如圖2,得到最大旋轉(zhuǎn)角∠BMO= 度,此時(shí)點(diǎn)N到CD的距離是 。
探究二:
將如圖1中的扇形紙片NOP按下面對(duì)α的要求剪掉,使扇形紙片MOP繞點(diǎn)M在AB,CD之間順時(shí)針旋轉(zhuǎn)。
(1)如圖3,當(dāng)α=60°時(shí),求在旋轉(zhuǎn)過程中,點(diǎn)P到CD的最小距離,并請(qǐng)指出旋轉(zhuǎn)角∠BMO的最大值;
(2)如圖4,在扇形紙片MOP旋轉(zhuǎn)過程中,要保證點(diǎn)P能落在直線CD上,請(qǐng)確定α的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年北京市宣武區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com