【題目】 下列事件中,最適合采用全面調(diào)查的是(

A.對(duì)某班全體學(xué)生出生日期的調(diào)查B.對(duì)全國(guó)中小學(xué)生節(jié)水意識(shí)的調(diào)查

C.對(duì)某批次的燈泡使用壽命的調(diào)查.D.對(duì)廈門市初中學(xué)生每天閱讀時(shí)間的調(diào)查

【答案】A

【解析】

根據(jù)普查得到的調(diào)查結(jié)果比較準(zhǔn)確,但所費(fèi)人力、物力和時(shí)間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似判斷即可.

解:A、對(duì)某班全體學(xué)生出生日期的調(diào)查情況適合普查,故此選項(xiàng)符合題意;

B、對(duì)全國(guó)中學(xué)生節(jié)水意識(shí)的調(diào)查范圍廣適合抽樣調(diào)查,故此選項(xiàng)不符合題意;

C、對(duì)某批次燈泡使用壽命的調(diào)查具有破壞性適合抽樣調(diào)查,故此選項(xiàng)不符合題意;

D、對(duì)遼陽市初中學(xué)生每天閱讀時(shí)間的調(diào)查范圍廣適合抽樣調(diào)查,故此選項(xiàng)不符合題意;

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,ABC=60°,BC=2cm,DBC的中點(diǎn),若動(dòng)點(diǎn)E1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,連接DE,當(dāng)BDE是直角三角形時(shí),t的值______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1探究如圖,直線AB、BC、AC兩兩相交交點(diǎn)分別為點(diǎn)A、BC,點(diǎn)D在線段AB,過點(diǎn)DDEBCAC于點(diǎn)E,過點(diǎn)EEFABBC于點(diǎn)F.若ABC=40°,DEF的度數(shù)

請(qǐng)將下面的解答過程補(bǔ)充完整并填空(理由或數(shù)學(xué)式)

DEBC,∴∠DEF= .( 。

EFAB, =∠ABC.( 。

∴∠DEF=∠ABC(等量代換)

∵∠ABC=40°∴∠DEF= °

2應(yīng)用如圖,直線AB、BC、AC兩兩相交交點(diǎn)分別為點(diǎn)A、BC,點(diǎn)D在線段AB的延長(zhǎng)線上過點(diǎn)DDEBCAC于點(diǎn)E,過點(diǎn)EEFABBC于點(diǎn)F.若ABC=60°,DEF= °

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程x22x+m0有實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是(

A.m1B.m≤1C.m1D.m≥1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1∥l2 , l1和AB的夾角∠DAB=135°,且AB=50mm,求兩平行線l1和l2之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,與∠A相鄰的外角是110°,要使△ABC為等腰三角形,則∠B的度數(shù)是(  )

A. 70° B. 55° C. 70°55° D. 70°55°40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2+2x+3的對(duì)稱軸是(
A.直線x=1
B.直線x=﹣1
C.直線x=﹣2
D.直線x=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,DBC的中點(diǎn),AC的垂直平分線分別交AC、ADAB于點(diǎn)E、O、F,則圖中全等三角形的對(duì)數(shù)是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連接CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ.

(1)如圖a,求證:△BCP≌△DCQ;
(2)如圖,延長(zhǎng)BP交直線DQ于點(diǎn)E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案