如圖,點(diǎn)A、B分別表示2個居民小區(qū).
(1)若直線l表示公交通道,要在其旁建1個公交車站,且使從該站到2個小區(qū)的路程相等,應(yīng)如何確定車站的位置?請用直尺和圓規(guī),在圖①中畫出,不寫做法,保留作圖痕跡.
(2)若直線l表示燃?xì)夤艿,要在其旁?個泵站,且使從該站向2個小區(qū)輸氣的管道總長最短,應(yīng)如何確定泵站的位置?請在圖②中畫出,作圖工具不限,保留作圖痕跡.

解:如圖所示:

圖①中P點(diǎn)就是公交車站;圖②中P點(diǎn)就是泵站.
分析:(1)作出AB的垂直平分線,與l的交點(diǎn)就是公交車站位置;
(2)首先作出A關(guān)于l的對稱點(diǎn)A′,連接A′B于l的交點(diǎn)就是泵站位置.
點(diǎn)評:此題主要考查了應(yīng)用與設(shè)計作圖,關(guān)鍵是掌握線段垂直平分線的作法,以及過直線外一點(diǎn)作已知直線的垂線的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•吉林)如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1:y=
1
4
x2于點(diǎn)A、B,交拋物線C2:y=
1
9
x2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.
【猜想與證明】
填表:
m 1 2 3
AB
CD
      
     
由上表猜想:對任意m(m>0)均有
AB
CD
=
2
3
2
3
.請證明你的猜想.
【探究與應(yīng)用】
(1)利用上面的結(jié)論,可得△AOB與△CQD面積比為
2
3
2
3
;
(2)當(dāng)△AOB和△CQD中有一個是等腰直角三角形時,求△CQD與△AOB面積之差;
【聯(lián)想與拓展】
如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為
8
27
8
27

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1:y=數(shù)學(xué)公式x2于點(diǎn)A、B,交拋物線C2:y=數(shù)學(xué)公式x2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.
【猜想與證明】
填表:
m123
數(shù)學(xué)公式   
  
由上表猜想:對任意m(m>0)均有數(shù)學(xué)公式=______.請證明你的猜想.
【探究與應(yīng)用】
(1)利用上面的結(jié)論,可得△AOB與△CQD面積比為______;
(2)當(dāng)△AOB和△CQD中有一個是等腰直角三角形時,求△CQD與△AOB面積之差;
【聯(lián)想與拓展】
如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年吉林省中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1:y=x2于點(diǎn)A、B,交拋物線C2:y=x2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.
【猜想與證明】
填表:
m123
      
     
由上表猜想:對任意m(m>0)均有=______.請證明你的猜想.
【探究與應(yīng)用】
(1)利用上面的結(jié)論,可得△AOB與△CQD面積比為______;
(2)當(dāng)△AOB和△CQD中有一個是等腰直角三角形時,求△CQD與△AOB面積之差;
【聯(lián)想與拓展】
如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(吉林卷)數(shù)學(xué)(解析版) 題型:解答題

如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1于點(diǎn)A、B,交拋物線C2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.

【猜想與證明】

填表:

m

1

2

3

 

 

 

由上表猜想:對任意m(m>0)均有=    .請證明你的猜想.

【探究與應(yīng)用】

(1)利用上面的結(jié)論,可得△AOB與△CQD面積比為    ;

(2)當(dāng)△AOB和△CQD中有一個是等腰直角三角形時,求△CQD與△AOB面積之差;

【聯(lián)想與拓展】

如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為    

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在軸正半軸上,過點(diǎn)P作平行于軸的直線,分別交拋物線C1于點(diǎn)A、B,交拋物線C2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.

猜想與證明   填表:

m

1

2

3

由上表猜想:對任意m(m>0)均有=          .請證明你的猜想.

探究與應(yīng)用  (1)利用上面的結(jié)論,可得⊿AOB與⊿CQD面積比為          ;

(2)當(dāng)⊿AOB和⊿CQD中有一個是等腰直角三角形時,求⊿CQD與⊿AOB面積之差;

聯(lián)想與拓展  如圖②過點(diǎn)A作軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作軸的平行線交拋物線C1于點(diǎn)F.在軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則⊿MAE與⊿MDF面積的比值為             .

 


查看答案和解析>>

同步練習(xí)冊答案