【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)不等的正方形依次排列,每個(gè)正方形都有一個(gè)頂點(diǎn)落在函數(shù)y=x的圖象上,從左向右第3個(gè)正方形中的一個(gè)頂點(diǎn)A的坐標(biāo)為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn , 則Sn的值為 . (用含n的代數(shù)式表示,n為正整數(shù))

【答案】24n5
【解析】解:∵函數(shù)y=x與x軸的夾角為45°, ∴直線y=x與正方形的邊圍成的三角形是等腰直角三角形,
∵A(8,4),
∴第四個(gè)正方形的邊長(zhǎng)為8,
第三個(gè)正方形的邊長(zhǎng)為4,
第二個(gè)正方形的邊長(zhǎng)為2,
第一個(gè)正方形的邊長(zhǎng)為1,
…,
第n個(gè)正方形的邊長(zhǎng)為2n1
由圖可知,S1= ×1×1+ ×(1+2)×2﹣ ×(1+2)×2= ,
S2= ×4×4+ ×(4+8)×8﹣ ×(4+8)×8=8,
…,
Sn為第2n與第2n﹣1個(gè)正方形中的陰影部分,
第2n個(gè)正方形的邊長(zhǎng)為22n1 , 第2n﹣1個(gè)正方形的邊長(zhǎng)為22n2 ,
Sn= 22n222n2=24n5
故答案為:24n5

根據(jù)直線解析式判斷出直線與x軸的夾角為45°,從而得到直線與正方形的邊圍成的三角形是等腰直角三角形,再根據(jù)點(diǎn)A的坐標(biāo)求出正方形的邊長(zhǎng)并得到變化規(guī)律表示出第n個(gè)正方形的邊長(zhǎng),然后根據(jù)陰影部分的面積等于一個(gè)等腰直角三角形的面積加上梯形的面積再減去一個(gè)直角三角形的面積列式求解并根據(jù)結(jié)果的規(guī)律解答即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)解不等式:2x﹣3≤ (x+2)
(2)解方程組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x與二次函數(shù)y=x2+bx的圖象相交于O、A兩點(diǎn),點(diǎn)A(3,3),點(diǎn)M為拋物線的頂點(diǎn).

(1)求二次函數(shù)的表達(dá)式;
(2)長(zhǎng)度為2 的線段PQ在線段OA(不包括端點(diǎn))上滑動(dòng),分別過點(diǎn)P、Q作x軸的垂線交拋物線于點(diǎn)P1、Q1 , 求四邊形PQQ1P1面積的最大值;
(3)直線OA上是否存在點(diǎn)E,使得點(diǎn)E關(guān)于直線MA的對(duì)稱點(diǎn)F滿足SAOF=SAOM?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a>0)的對(duì)稱軸是過點(diǎn)(1,0)且平行于y軸的直線,若點(diǎn)P(4,0)在該拋物線上,則4a﹣2b+c的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)x,y定義一種新運(yùn)算T,規(guī)定:T(x,y)= (其中a、b均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:T(0,1)= =b.
(1)已知T(1,﹣1)=﹣2,T(4,2)=1. ①求a,b的值;
②若關(guān)于m的不等式組 恰好有3個(gè)整數(shù)解,求實(shí)數(shù)p的取值范圍;
(2)若T(x,y)=T(y,x)對(duì)任意實(shí)數(shù)x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應(yīng)滿足怎樣的關(guān)系式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,交AB的延長(zhǎng)線于點(diǎn)D,且∠D=2∠CAD.
(1)求∠D的度數(shù);
(2)若CD=2,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以O(shè)為圓心的兩個(gè)同心圓中,大圓與小圓的半徑分別為3cm和1cm,若⊙P與這兩個(gè)圓都相切,則圓P的半徑為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D,E,F(xiàn)分別是AB,BC,CA的中點(diǎn),AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)求證:∠DHF=∠DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校“振興閱讀工程”的開展情況,教育部門對(duì)該校初中生的閱讀情況進(jìn)行了隨機(jī)問卷調(diào)查,繪制了如下圖表: 初中生喜愛的文學(xué)作品種類調(diào)查統(tǒng)計(jì)表

種類

小說

散文

傳記

科普

軍事

詩(shī)歌

其他

人數(shù)

72

8

21

19

15

2

13


根據(jù)上述圖表提供的信息,解答下列問題:
(1)喜愛小說的人數(shù)占被調(diào)查人數(shù)的百分比是多少?初中生每天閱讀時(shí)間的中位數(shù)在哪個(gè)時(shí)間段內(nèi)?
(2)將寫讀后感、筆記積累、畫圈點(diǎn)讀等三種方式稱為有記憶閱讀.請(qǐng)估計(jì)該,F(xiàn)有的2000名初中生中,能進(jìn)行有記憶閱讀的人數(shù)約是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案