(2009•河西區(qū)一模)如圖,已知PA,PB分別切⊙O于A、B,CD切⊙O于E,PO=13,AO=5,則△PCD周長(zhǎng)為
24
24
分析:由切線長(zhǎng)定理可得PA=PB,DA=DE,CE=EB,由于△PCD的周長(zhǎng)=PC+CE+ED+PD,所以△PCD的周長(zhǎng)=PC+CB+AD+PD=PA+PB=2PA,故可求得三角形的周長(zhǎng).
解答:解:連接OB.
∵PA是⊙O的切線,點(diǎn)A是切點(diǎn),
∴PA⊥OA;
∴PA=
PO2-OA2
=12;
∵PA、PB為圓的兩條相交切線,
∴PA=PB;
同理可得:CA=CE,DE=DB.
∵△PCD的周長(zhǎng)=PC+CE+ED+PD,
∴△PCD的周長(zhǎng)=PC+CA+BD+PD=PA+PB=2PA,
∴△PCD的周長(zhǎng)=24;
故答案是:24.
點(diǎn)評(píng):本題考查了切線的性質(zhì)以及切線長(zhǎng)定理的運(yùn)用.切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)長(zhǎng)度相等,圓心和這一點(diǎn)的連線,平分這兩條切線的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•河西區(qū)一模)下列不等關(guān)系表示正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•河西區(qū)一模)如圖所示,在半徑為r的圓內(nèi)作一個(gè)內(nèi)接正三角形,依次再作內(nèi)切圓,那么圖中最小的圓的半徑是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•河西區(qū)一模)如圖,正方形的邊長(zhǎng)為a,分別以正方形的四個(gè)頂點(diǎn)為圓心,以
a
2
為半徑作圓,則圖中的陰影面積為
4-π
4
a2
4-π
4
a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•河西區(qū)一模)如圖,將△BCE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到△ACD,AC交BE與點(diǎn)F,AD交CE于點(diǎn)G,AD交BE于點(diǎn)P,連接AB和ED.
(1)判斷△ABC和△ECD的形狀,并說(shuō)明理由;
(2)求證:△ABF∽△CGD.

查看答案和解析>>

同步練習(xí)冊(cè)答案