如圖,在AB、AC上各取一點(diǎn)D、E,使得AE=AD,連接CD、BE相交于點(diǎn)O,再連接AO.若∠CAO=∠BAO,則圖中全等三角形共有


  1. A.
    3對(duì)
  2. B.
    4對(duì)
  3. C.
    5對(duì)
  4. D.
    6對(duì)
B
分析:認(rèn)真觀察圖形,確定已知條件在圖形上的位置,結(jié)合全等三角形的判定方法,由易到難,仔細(xì)尋找.
解答:∵∠BAO=∠CAO,AE=AD,AO=AO,
∴△AEO≌△ADO,
∴OE=OD,∠ADO=∠AEO,
∴∠BOD=∠COE,
又∵∠EDB=∠FDC,
∴△CEO≌△BDO,
∴∠B=∠C,CE=BD,
∴AC=AB,
∴△AOC≌△AOB,△ADC≌△AEB.
∴圖中全等三角形共4對(duì).
故選B.
點(diǎn)評(píng):本題考查三角形全等的判定方法和全等三角形的性質(zhì).注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,在AB、AC上各取一點(diǎn)D、E,使得AE=AD,連接CD、BE相交于點(diǎn)O,再連接AO.若∠CAO=∠BAO,則圖中全等三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD、CE相交于點(diǎn)O,再連接AO、BC,若∠1=∠2,則圖中全等三角形共有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:遼寧省中考真題 題型:解答題

已知△ABC 是等邊三角形.  
(1 )將△ABC 繞點(diǎn)A 逆時(shí)針旋轉(zhuǎn)角(0 °<<180 °),得到△ADE ,BD 和EC 所在直線相交于點(diǎn)O.       
 ①如圖   ,當(dāng)   =20 °時(shí),△ABD 與△ACE 是否全等?(    )(填“是”或“否”),∠BOE=(    )度;
②當(dāng)△ABC旋轉(zhuǎn)到如圖  所在位置時(shí),求∠BOE的度數(shù);  
(2)如圖  ,在AB和AC上分別截取點(diǎn)B′和C′,使AB=   AB′,AC=   AC′,連接B′C′,將△AB′C′繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角  (0°<   <180°),得到△ADE
(3)BD和EC所在直線相交于點(diǎn)O,請(qǐng)利用圖  探索∠BOE的度數(shù),直接寫(xiě)出結(jié)果,不必說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案