如圖,兩圓相交于A,B兩點(diǎn),小圓經(jīng)過大圓的圓心O,點(diǎn)C、D分別在兩圓上,若∠ADB=110°,則∠ACB的度數(shù)為( 。
分析:首先連接OA,OB,由圓的內(nèi)接四邊形的性質(zhì),即可求得∠AOB的度數(shù),又由圓周角定理,即可求得∠ACB的度數(shù).
解答:解:連接OA,OB,
∵∠ADB=110°,
∴∠AOB=180°-∠ADB=70°,
∴∠ACB=
1
2
∠AOB=35°.
故選A.
點(diǎn)評(píng):此題考查了圓的內(nèi)接四邊形的性質(zhì)與圓周角定理.注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,兩圓相交于A,B兩點(diǎn),小圓經(jīng)過大圓的圓心O,點(diǎn)C,D分別在兩圓上,若∠ADB=100°,則∠ACB的度數(shù)為(  )
A、35°B、40°C、50°D、80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,兩圓相交于C、D,AB是兩圓的一條外公切線,A、B為切點(diǎn),CD的延長(zhǎng)線交AB于M,若CD=9,MD=3,則AB的長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,兩圓相交于A,B兩點(diǎn),過A點(diǎn)的割線分別交兩圓于D,F(xiàn)點(diǎn),過B點(diǎn)的割線分別交兩圓于H,E點(diǎn).求證:HD∥EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,兩圓相交于A,B兩點(diǎn),小圓經(jīng)過大圓的圓心O,點(diǎn)C、D分別在兩圓上,若∠ACB=50°,則∠ADB的度數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案