已知B線段AC上的一點,M是線段AB的中點,N是線段AC的中點,P是線段NA的中點,Q是線段MA的中點,則MN:PQ=( 。
分析:根據(jù)線段中點得出AM=
1
2
AB,AN=
1
2
AC,AP=
1
2
AN=
1
4
AC,AQ=
1
2
AM=
1
4
AB,求出PQ=
1
4
BC,MN=
1
2
BC,代入求出即可.
解答:
解:∵M是線段AB的中點,N是線段AC的中點,
∴AM=
1
2
AB,AN=
1
2
AC,
∵P是線段NA的中點,Q是線段MA的中點,
∴AP=
1
2
AN=
1
4
AC,AQ=
1
2
AM=
1
4
AB,
∴PQ=
1
4
AC-
1
4
AB=
1
4
BC,MN=
1
2
AC-
1
2
AB=
1
2
BC,
∴MN:PQ=2:1,
故選B.
點評:本題考查了線段的中點和求兩點間的距離的應(yīng)用,關(guān)鍵是求出PQ=
1
4
BC,MN=
1
2
BC.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

將一副三角尺如圖拼接:含30°角的三角尺(△ABC)的長直角邊與含45°角的三角尺(△ACD)的斜邊恰好重合.已知AB=2
3
,P是線段AC上的一個動點.
(1)當點P運動到∠ABC的平分線上時,連接DP,求DP的長;
(2)當點P在運動過程中出現(xiàn)PD=BC時,∠PDA=
15°或75°
15°或75°
;
(3)當PC=
3
2
3
2
時,以D,P,B,Q為頂點的平行四邊形的頂點Q恰好在邊BC上,
此時?DPBQ的面積=
9
4
9
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•裕華區(qū)二模)如圖①,將兩個等腰直角三角形疊放在一起,使上面三角板的一個銳角頂點與下面三角板的直角頂點重合,并將上面的三角板繞著這個頂點逆時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當下面三角板的斜邊被分成三條線段時,我們來研究這三條線段之間的關(guān)系.
(1)實驗與操作:
如圖②,如果上面三角板的一條直角邊旋轉(zhuǎn)到CM的位置時,它的斜邊恰好旋轉(zhuǎn)到CN的位置,請在網(wǎng)格中分別畫出以AM、MN和NB為邊長的正方形,觀察這三個正方形的面積之間的關(guān)系;
(2)猜想與探究:
如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點,∠MCN=45°,作DA⊥AB于點A,截取DA=NB,并連接DC、DM.
我們來證明線段CD與線段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于點A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

請你繼續(xù)解答:
①線段MD與線段MN相等嗎?為什么?
②線段AM、MN、NB有怎樣的數(shù)量關(guān)系,為什么?
(3)拓廣與運用:
如圖④,已知線段AB上任意一點M(AM<MB),是否總能在線段MB上找到一點N,使得分別以AM與BN為邊長的正方形的面積的和等于以MN為邊長的正方形的面積?若能,請在圖④中畫出點N的位置,并簡要說明作法;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•路南區(qū)一模)如圖①,在△ABC中,AB=BC,∠ABC=120°,點P是線段AC上的動點(點P與點A、點C不重合),連接BP.將△ABP繞點P按順時針方向旋轉(zhuǎn)α角(0°<α<180°),得到△A1B1P,連接AA1,直線AA1分別交直線PB、直線BB1于點E,F(xiàn).
(1)如圖①,當0°<α<60°時,在α角變化過程中,△APA1與△BPB1始終存在
相似
相似
關(guān)系(填“相似”或“全等”),同時可得∠A1AP
=
=
∠B1BP(填“=”或“<”“>”關(guān)系).請說明△BEF與△AEP之間具有相似關(guān)系;
(2)如圖②,設(shè)∠ABP=β,當120°<α<180°時,在α角變化過程中,是否存在△BEF與△AEP全等?若存在,求出α與β之間的數(shù)量關(guān)系;若不存在,請說明理由;
(3)如圖③,當α=120°時,點E、F與點B重合.已知AB=4,設(shè)AP=x,S=△A1BB1面積,求S關(guān)于x的函數(shù)關(guān)系式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2006•海珠區(qū)一模)已知線段AC上有一動點B,分別以AB、BC為邊向線段的同一側(cè)作等邊三角形△ABD和△BCE.連接AE、CD(如圖),若MN分別為AE、CD的中點,
(1)求證:AM=CN;
(2)求∠MBN的大;
(3)若連接MN,請你盡可能多的說出圖中相似三角形和全等三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知線段AD上兩點B、C,如果AB=CD,
(1)畫出圖形,量出線段AC與BD的長度;
(2)再畫幾個符合條件的圖形試一試,你能發(fā)現(xiàn)線段AC與線段BD有怎樣的大小關(guān)系?
(3)你能對(2)中的線段AC與線段BD的大小關(guān)系加以說明嗎?

查看答案和解析>>

同步練習(xí)冊答案