【題目】如圖,矩形的兩邊在坐標(biāo)軸上,為平面直角坐標(biāo)系的原點,軸上的某一點為位似中心,作位似圖形,且點的坐標(biāo),則位似中心的坐標(biāo)為__________

【答案】

【解析】

連接BFy軸于P,根據(jù)題意求出CG,再根據(jù)相似三角形的性質(zhì)求出GP,即可求出點P的坐標(biāo).

解:如圖所示,連接BFy軸于P,

∵四邊形ABCD和四邊形EFGO是矩形,B,F的坐標(biāo)分別為(4,4),(2,1)

∴點C的坐標(biāo)為(0,4),G的坐標(biāo)為(0,1),

CG=3,

BCGF

PGF∽△PCB,

GPPC=GFBC=12

GP=1,PC=2

OP=2,

∴點P的坐標(biāo)為(0,2),

即:位似中心的坐標(biāo)為(02.

故答案為:(0,2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】港珠澳大橋,從2009年開工建造,于20181024日正式通車.其全長55公里,連接港珠澳三地,集橋、島、隧于一體,是世界上最長的跨海大橋.如圖是港珠澳大橋的海豚塔部分效果圖,為了測得海豚塔斜拉索頂端A距離海平面的高度,先測出斜拉索底端C到橋塔的距離(CD的長)約為100米,又在C點測得A點的仰角為30°,測得B點的俯角為20°,求斜拉索頂端A點到海平面B點的距離(AB的長).(已知1.73,tan20°≈0.36,結(jié)果精確到0.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正多邊形每個內(nèi)角比相鄰?fù)饨谴?/span>60°.

1)求這個正多邊形的邊數(shù);

2)求這個正多邊形的內(nèi)切圓與外切圓的半徑之比;

3)將這個多邊形對折,并完全重合,求得到圖形的內(nèi)角和是多少度(按一層計算)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形OABC,以點O為坐標(biāo)原點建立平面直角坐標(biāo)系,其中A20),C0,3),點P以每秒1個單位的速度從點C出發(fā)在射線CO上運動,連接BP,作BEPBx軸于點E,連接PEAB于點F,設(shè)運動時間為t秒.在運動的過程中,寫出以PO、E為頂點的三角形與ABE相似時t的值為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線(其中m0)與x軸交于A、B兩點(AB的左側(cè)),與y軸交于點C,連接AC、BC

(1)直接寫出點A、點C的坐標(biāo);

(2)當(dāng)∠ACB=90°時,點D是第一象限拋物線上一動點,連接OD,當(dāng)OD的長最小時,求點D的坐標(biāo);

(3)直線經(jīng)過點B,與拋物線交于另一點G,點Py軸上,點Q在拋物線上,以點B、G、PQ為頂點的四邊形能否為矩形?若能,求出點P的坐標(biāo),若不能,請說明理由.

(4) 當(dāng)tanCBO=時,動點P從點A出發(fā),以每秒2個單位長度的速度沿射線AO方向勻速運動,動點Q從點B出發(fā),以每秒1個單位長度的速度沿射線BO方向勻速運動,PQ兩點同時運動,相遇時停止,在運動過程中,以PQ為一邊在x軸上方作正方形PQMN,設(shè)運動時間為t.不妨設(shè)正方形PQMNABC重疊部分的面積為S,請直接寫出S關(guān)于t的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過點、.是線段上一動點(點不與、重合),過點軸的垂線交拋物線于點,交線段于點.過點,垂足為點.

[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/18/2206393160556544/2207286529548288/STEM/a9696d0cbdac438aa94c80bfc838afd4.png]

1)求該拋物線的解析式;

2)試求線段的長關(guān)于點的橫坐標(biāo)的函數(shù)解析式,并求出的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DBC的中點,過D點的直線GFACF,交AC的平行線BGG點,DE⊥DF,交AB于點E,連結(jié)EG、EF

1)求證:BGCF

2)請你判斷BE+CFEF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一塊含30°(即CAB=30°)角的三角板和一個量角器拼在一起,三角板斜邊AB與量角器所在圓的直徑MN重合,其量角器最外緣的讀數(shù)是從N點開始(即N點的讀數(shù)為0),現(xiàn)有射線CP繞著點C從CA順時針以每秒2度的速度旋轉(zhuǎn)到與ACB外接圓相切為止.在旋轉(zhuǎn)過程中,射線CP與量角器的半圓弧交于E.

(1)當(dāng)射線CP與ABC的外接圓相切時,求射線CP旋轉(zhuǎn)度數(shù)是多少?

(2)當(dāng)射線CP分別經(jīng)過ABC的外心、內(nèi)心時,點E處的讀數(shù)分別是多少?

(3)當(dāng)旋轉(zhuǎn)7.5秒時,連接BE,求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于反比例函數(shù)y,下列說法不正確的是(  )

A. yx的增大而增大

B. 它的圖象在第二、四象限

C. 當(dāng)k2時,它的圖象經(jīng)過點(5,﹣1

D. 它的圖象關(guān)于原點對稱

查看答案和解析>>

同步練習(xí)冊答案