如圖,在RtABC中,ABC=90°,BA=BC.點D是AB的中點,連接CD,過點B作BG丄CD,分別交GD、CA于點E、F,與過點A且垂直于的直線相交于點G,連接DF.給出以下四個結(jié)論:①;②點F是GE的中點;③AF=AB;④SABC=SBDF,其中正確的結(jié)論序號是________.

答案:①③
解析:

  分析:首先根據(jù)題意易證得AFG∽△CFB,根據(jù)相似三角形的對應邊成比例與BA=BC,繼而證得正確;由點D是AB的中點,易證得BC=2BD,由等角的余角相等,可得DBE=BCD,即可得AG=AB,繼而可得FG=BF;即可得AF=AC,又由等腰直角三角形的性質(zhì),可得AC=AB,即可求得AF=AB;則可得SABC=6SBDF

  解答:解:在RtABC中,ABC=90°,

  ABBC,AGAB,

  AGBC,

  ∴△AFG∽△CFB,

  ,

  BA=BC,

  

  故①正確;

  ∵∠ABC=90°,BGCD,

  ∴∠DBE+BDE=BDE+BCD=90°,

  ∴∠DBE=BCD,

  AB=CB,點D是AB的中點,

  BD=AB=CB,

  tanBCD=

  在RtABG中,tanDBE=,

  ,

  FG=FB,

  故②錯誤;

  ∵△AFG∽△CFB,

  AF:CF=AG:BC=1:2,

  AF=AC,

  AC=AB,

  AF=AB,

  故③正確;

  BD=AB,AF=AC,

  SABC=6SBDF

  故④錯誤.

  點評:此題考查了相似三角形的判定與性質(zhì)、直角三角形的性質(zhì)以及三角函數(shù)等知識.此題難度適中,解題的關(guān)鍵是證得AFG∽△CFB,注意掌握數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應用.


提示:

相似三角形的判定與性質(zhì);勾股定理;等腰直角三角形.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習冊答案