(1)問題探究
如圖1,分別以△ABC的邊AC與邊BC為邊,向△ABC外作正方形ACD1E1和正方形BCD2E2,過點(diǎn)C
作直線KH交直線AB于點(diǎn)H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分別為點(diǎn)M,N.試探究線段D1M與線段D2N的數(shù)量關(guān)系,并加以證明.
(2)拓展延伸
①如圖2,若將“問題探究”中的正方形改為正三角形,過點(diǎn)C作直線K1H1,K2H2,分別交直線AB于點(diǎn)H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分別為點(diǎn)M,N.D1M=D2N是否仍成立?若成立,給出證明;若不成立,說明理由.
②如圖3,若將①中的“正三角形”改為“正五邊形”,其他條件不變.D1M=D2N是否仍成立?(要求:在
圖3中補(bǔ)全圖形,注明字母,直接寫出結(jié)論,不需證明)

解:(1)D1M=D2N。證明如下:
∵∠ACD1=90°,∴∠ACH+∠D1CK=180°﹣90°=90°。
∵∠AHK=∠ACD1=90°,∴∠ACH+∠HAC=90°。
∴∠D1CK=∠HAC。
在△ACH和△CD1M中,∠D1CK=∠HAC,∠AHC="∠C" M D1=90°,AC="C" D1,
∴△ACH≌△CD1M(AAS)!郉1M=CH。
同理可證D2N=CH。
∴D1M=D2N。
(2)①D1M=D2N成立。證明如下:
過點(diǎn)C作CG⊥AB,垂足為點(diǎn)G,

∵∠H1AC+∠ACH1+∠AH1C=180°,
∠D1CM+∠ACH1+∠ACD1=180°,∠AH1C=∠ACD1,
∴∠H1AC=∠D1CM。
在△ACG和△CD1M中,∠H1AC=∠D1CM,∠AGC="∠C" M D1=90°,AC="C" D1,
∴△ACG≌△CD1M(AAS)!郈G=D1M。
同理可證CG=D2N。
∴D1M=D2N。
②作圖如下:

D1M=D2N還成立。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、情境觀察
將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是
AD
,∠CAC′=
90
°.

問題探究
如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

拓展延伸
如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H.若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•煙臺)(1)問題探究
如圖1,分別以△ABC的邊AC與邊BC為邊,向△ABC外作正方形ACD1E1和正方形BCD2E2,過點(diǎn)C作直線KH交直線AB于點(diǎn)H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分別為點(diǎn)M,N.試探究線段D1M與線段D2N的數(shù)量關(guān)系,并加以證明.
(2)拓展延伸
①如圖2,若將“問題探究”中的正方形改為正三角形,過點(diǎn)C作直線K1H1,K2H2,分別交直線AB于點(diǎn)H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分別為點(diǎn)M,N.D1M=D2N是否仍成立?若成立,給出證明;若不成立,說明理由.
②如圖3,若將①中的“正三角形”改為“正五邊形”,其他條件不變.D1M=D2N是否仍成立?(要求:在圖3中補(bǔ)全圖形,注明字母,直接寫出結(jié)論,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

情境觀察
將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是
AD或A′D
AD或A′D
,∠CAC′=
90
90
°.

問題探究
如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-相似的判定解答題(帶解析) 題型:解答題

情境觀察將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是 _________ ,∠CAC′= _________ °.

問題探究
如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

拓展延伸
如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H.若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案