已知:如圖,直線y=-x+4與x軸相交于點A,與直線y=x相交于點P.

(1)求點P的坐標(biāo).

(2)請判斷△OPA的形狀并說明理由.

(3)動點E從原點O出發(fā),以每秒1個單位的速度沿著O→P→A的路線向點A勻速運動(E不與點O、A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B設(shè)運動t秒時,矩形EBOF與△OPA重疊部分的面積為S.

求:①S與t之間的函數(shù)關(guān)系式.

②當(dāng)t為何值時,S最大,并求S的最大值.

答案:
解析:

  解:(1)  2分

  解得:  3分

  ∴點P的坐標(biāo)為(2,)  4分

  (2)將y=0代入y=

  ∴x=4,即OA=4  4分

  做PD⊥OA于D,則OD=2,PD=2

  ∵tan∠POA=

  ∴∠POA=60°

  ∵OP=

  ∴△POA是等邊三角形  6分

  (3)①當(dāng)0<t≤4時,如下圖

  在Rt△EOF中,∵∠EOF=60°,OE=t

  ∴EF=t,OF=t  7分

  ∴S=·OF·EF=

  當(dāng)4<t<8時,如下圖

  設(shè)EB與OP相交于點C

  易知:CE=PE=t-4,AE=8-t

  ∴AF=4-,EF=(8-t)

  ∴OF=OA-AF=4-(4-t)=t

  ∴S=(CE+OF)·EF

 。(t-4+t)×(8-t)

  =-+4t-8  9分

 、诋(dāng)0<t≤4時,S=,t=4時,S最大=2

  當(dāng)4<t<8時,S=-+4t-8=-(t-)2

  t=時,S最大

  ∵>2,∴當(dāng)t=時,S最大  12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:廈門市2007年中考模擬試題(一)、數(shù)學(xué)試卷-華師版 題型:044

已知:如圖,直線y=-x+3與x軸、y軸分別交于點B、C,拋物線y=-x2+bx+c經(jīng)過點B、C,點A是拋物線與x軸的另一個交點.

(1)求拋物線的解析式.

(2)若點P在直線BC上,且S△PACS△PAB,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年山東省濟南市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044

已知:如圖,直線y=-x+4與x軸相交于點A,與直線y=x相交于點P.

(1)求點P的坐標(biāo).

(2)請判斷△OPA的形狀并說明理由.

(3)動點E從原點O出發(fā),以每秒1個單位的速度沿著O→P→A的路線向點A勻速運動(E不與點O、A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B,設(shè)運動t秒時,矩形EBOF與△OPA重疊部分的面積為S.

求:①S與t之間的函數(shù)關(guān)系式.

②當(dāng)t為何值時,S最大,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省徐州市中考模擬數(shù)學(xué)試卷(B卷)(帶解析) 題型:解答題

已知:如圖,拋物線y=ax2+bx+2與x軸的交點是A(3,0)、B(6,0),與y軸的交點是C.

(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)P(x,y)(0<x<6)是拋物線上的動點,過點P作PQ∥y軸交直線BC于點Q.
①當(dāng)x取何值時,線段PQ長度取得最大值?其最大值是多少?
②是否存在點P,使△OAQ為直角三角形?若存在,求點P坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:北京同步題 題型:解答題

已知:如圖,直線y =-x +12 分別交x 軸、y 軸于A 、B 點,將△AOB 折疊,使A 點恰好落在OB 的中點C 處,折痕為DE 。
(1) 求AE 的長及sin ∠BEC 的值;
(2) 求△CDE 的面積。

查看答案和解析>>

同步練習(xí)冊答案