如圖,正方形ABCD的邊長為4,點M在邊DC上,M、N兩點關于對角線AC對稱,若DM=1,則tan∠ADN=   
【答案】分析:M、N兩點關于對角線AC對稱,所以DM=BN,進而求出CN的長度.tan∠ADN=tan(90°-∠CDN),根據(jù)三角函數(shù)求解.
解答:解:在正方形ABCD中,AB=CD.
∵M、N兩點關于對角線AC對稱,
∴BN=DM=1.
又∵tan∠ADN=tan(90°-∠CDN),
∴tan∠ADN==
∵CN=BC-BN=4-1=3,
∴tan∠ADN==,
∴tan∠ADN=
點評:本題綜合考查了正方形的性質,軸對稱的性質以及銳角三角函數(shù)的定義.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案