【題目】如圖,在四邊形ABCD中,AB=4,AD=3,AB⊥AD ,BC=12.
(1)求BD的長;
(2)當(dāng)CD為何值時,△BDC是以CD為斜邊的直角三角形?
(3)在(2)的條件下,求四邊形ABCD的面積.
【答案】(1)BD的長度是5;(2)CD為13時△BDC為直角三角形;(3)四邊形ABCD的面積是36.
【解析】
(1)在直角△ABD中,利用勾股定理求得BD的長度;
(2)利用勾股定理的逆定理求得CD的值;
(3)四邊形ABCD的面積由兩個直角三角形組成,利用三角形的面積公式解答.
(1)如圖,∵AB=4,AD=3,AB⊥AD.
∴BD5,即BD的長度是5;
(2)在直角△BCD中,BD=5,BC=12.
因為CD為斜邊,CD13.
即CD為13時△BDC為直角三角形;
(3)S四邊形ABCD的面積=S△ABD+S△BCDABADBDBC5×12=36.
綜上所述,四邊形ABCD的面積是36
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生的安全意識情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查根據(jù)調(diào)在結(jié)果,把學(xué)生的安全意識分成“淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
這次調(diào)查一共抽取了多少名學(xué)生?
請將條形統(tǒng)計圖補(bǔ)充完整;
若該校有1800名學(xué)生,現(xiàn)要對安全意識為“淡薄”、“一般”的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,請你估計全校需要強(qiáng)化安全教育的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC=8,AB=10,△ABC的面積為30,AD平分∠BAC,F、E分別為AC、AD上兩動點,連接CE、EF,則CE+EF的最小值為_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,以A為圓心,AB為半徑的圓交AD于F,交BC于G,延長BA交圓于E.
(1)若ED與⊙A相切,試判斷GD與⊙A的位置關(guān)系,并證明你的結(jié)論;
(2)在(1)的條件不變的情況下,若GC=CD,求∠C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為大力弘揚(yáng)“奉獻(xiàn)、友愛、互助、進(jìn)步”的志愿服務(wù)精神,傳播“奉獻(xiàn)他人、提升自我”的志愿服務(wù)理念,東營市某中學(xué)利用周末時間開展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個志愿服務(wù)活動(每人只參加一個活動),九年級某班全班同學(xué)都參加了志愿服務(wù),班長為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)求該班的人數(shù);
(2)請把折線統(tǒng)計圖補(bǔ)充完整;
(3)求扇形統(tǒng)計圖中,網(wǎng)絡(luò)文明部分對應(yīng)的圓心角的度數(shù);
(4)小明和小麗參加了志愿服務(wù)活動,請用樹狀圖或列表法求出他們參加同一服務(wù)活動的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(-2,0),(x0,0),1<x0<2,與y軸的負(fù)半軸相交,且交點在(0,-2)的上方,下列結(jié)論:①b>0;②2a<b;③2a-b-1<0;④2a+c<0.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C,且當(dāng)x=0和x=2時,y的值相等,直線y=3x-7與這條拋物線交于兩點,其中一點橫坐標(biāo)為4,另一點是這條拋物線的頂點M.
(1)求頂點M的坐標(biāo).
(2)求這條拋物線對應(yīng)的函數(shù)解析式.
(3)P為線段BM上一點(P不與點B,M重合),作PQ⊥x軸于點Q,連接PC,設(shè)OQ=t,四邊形PQAC的面積為S,求S與t的函數(shù)解析式,并直接寫出t的取值范圍.
(4)在線段BM上是否存在點N,使△NMC為等腰三角形?若存在,求出點N的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)600個旅游紀(jì)念品,進(jìn)價為每個6元,第一周以每個10元的價格售出200個,第二周若按每個10元的價格銷售仍可售出200個,但商店為了適當(dāng)增加銷量,決定降價銷售(根據(jù)市場調(diào)查,單價每降低1元,可多售出50個,但售價不得低于進(jìn)價),單價降低x元銷售銷售一周后,商店對剩余旅游紀(jì)念品清倉處理,以每個4元的價格全部售出,如果這批旅游紀(jì)念品共獲利1250元,問第二周每個旅游紀(jì)念品的銷售價格為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為( )
A.25B.12.5C.5D.10
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com