在Rt△ABC中,a、b為直角邊,c為斜邊,若a=3,b=4,則△ABC斜邊上的高是
2.4
2.4
分析:首先利用勾股定理計(jì)算出AB的長,再利用三角形的面積公式計(jì)算出CD的長即可.
解答:解:如圖,∵AC=3,BC=4,
∴AB=
AC2+BC2
=5,
過C作斜邊AB上的高CD,
∵S△ABC=
1
2
AC•BC=
1
2
CD•AB,
1
2
×3×4=
1
2
×5•CD,
∴CD=2.4.
故答案為:2.4.
點(diǎn)評:此題主要考查了勾股定理,以及三角形的面積公式,關(guān)鍵是掌握勾股定理:在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊答案