二次函數(shù)y=ax2+bx+c的圖象過(guò)點(diǎn)(1,0)(0,3),對(duì)稱(chēng)軸x=-1.
(1)求函數(shù)解析式;
(2)若圖象與x軸交于A(yíng)、B(A在B左)與y軸交于C,頂點(diǎn)D,求四邊形ABCD的面積.
【答案】分析:(1)已知了對(duì)稱(chēng)軸為x=-1,即-=-1,然后將已知的兩點(diǎn)的坐標(biāo)代入拋物線(xiàn)的解析式中,聯(lián)立對(duì)稱(chēng)軸的解析式即可求出這個(gè)二次函數(shù)的解析式.
(2)由于四邊形ABCD不是規(guī)則的四邊形,因此可過(guò)D作x軸的垂線(xiàn),將四邊形ABCD的面積分成兩個(gè)直角三角形和一個(gè)直角梯形進(jìn)行求解.
解答:解:(1)由題意可得

解得
y=-x2-2x+3;

(2)由題意可知:A(-3,0),B(1,0),C(0,3),D(-1,4);
過(guò)D作DE⊥AB于E
S四邊形ABCD=S△ADE+S梯形DEOC+S△BOC=×AE×DE+×(DE+OC)×OE+×OB×OC
=×2×4+×(4+3)×1+×1×3
=9.
點(diǎn)評(píng):本題考查了二次函數(shù)解析式的確定、圖形的面積求法等知識(shí),不規(guī)則圖形的面積通常轉(zhuǎn)化為規(guī)則圖形的面積的和差進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線(xiàn)y=ax2+bx+c(a≠0)與x軸交于A(yíng)(-3,0)、B兩點(diǎn),與y軸交于精英家教網(wǎng)點(diǎn)C(0,
3
)
,當(dāng)x=-4和x=2時(shí),二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實(shí)數(shù)a,b,c的值;
(2)若點(diǎn)M、N同時(shí)從B點(diǎn)出發(fā),均以每秒1個(gè)單位長(zhǎng)度的速度分別沿BA、BC邊運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在A(yíng)C邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使得以B,N,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)y=ax2+bx+c,當(dāng)x=
12
時(shí),有最大值25,而方程ax2+bx+c=0的兩根α、β,滿(mǎn)足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)坐標(biāo)是(2,4),且直線(xiàn)y=x+4依次與y軸和拋物線(xiàn)相交于P、Q、R三點(diǎn),PQ:QR=1:3,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:①abc>0;②2a+b=0;③a+b+c>0;④當(dāng)-1<x<3時(shí),y>0.其中正確結(jié)論的序號(hào)是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對(duì)稱(chēng)軸是直線(xiàn)x=1,其圖象的一部分如圖所示.對(duì)于下列說(shuō)法:
①abc<0;②a-b+c<0;③3a+c<0;④當(dāng)-1<x<3時(shí),y>0.
其中正確的是
①②③
①②③
(把正確的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案