觀察下列各式:
2
3
=
2+ 
2
3
;
3
8
=
3+ 
3
8
;
4
15
=
4+ 
4
15
;
(1)按上述兩個(gè)等式的特征,請(qǐng)猜想5
5
24
=______;
(2)針對(duì)上述各式反映的規(guī)律,寫(xiě)出用n(n為自然數(shù)且n≥2)表示的式子;
(3)證明你在(2)中寫(xiě)的結(jié)論成立.
(1)總結(jié)規(guī)律可知5
5
24
=
5+
5
24
,

(2)由2
2
3
=
2+ 
2
3
=
2+ 
2
22-1
,
3
8
=
3+ 
3
8
=
3+ 
3
32-1
,
4
15
=
4+ 
4
15
=
4+ 
4
42-1
,
故根據(jù)上述規(guī)律可知n
n
n2 -1
n+ 
n
n2 -1


(3)理由:n
n
n2-1
=
n3
n2-1
=
n3-n+n
n2-1
=
n+
n
n2-1
,
故結(jié)論成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探索規(guī)律
觀察下列各式及驗(yàn)證過(guò)程:n=2時(shí)有式①:
2
3
=
2+
2
3
n=3時(shí)有式②:
3
8
=
3+
3
8

式①驗(yàn)證:
2
3
=
23
3
=
(23-2)+2
22-1
=
2(22-1)+2
22-1
=
2+
2
3

式②驗(yàn)證:
3
8
=
33
8
=
(33-3)+3
32-1
=
3(32-1)+3
32-1
=
3+
3
8

(1)針對(duì)上述式①、式②的規(guī)律,請(qǐng)寫(xiě)出n=4時(shí)的式子;
(2)請(qǐng)寫(xiě)出滿足上述規(guī)律的用n(n為任意自然數(shù),且n≥2)表示的等式,并加以驗(yàn)證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

猜想、探索規(guī)律
(1)某校生物教師李老師在生物實(shí)驗(yàn)室做試驗(yàn)時(shí),將水稻種子分組進(jìn)行發(fā)芽試驗(yàn);第1組取3粒,第2組取5粒,第3組取7!疵拷M所取種子數(shù)目比該組前一組增加2粒,按此規(guī)律,那么請(qǐng)你推測(cè)第100組應(yīng)該有種子數(shù).
 
粒;
(2)已知a1=
1
1×2×3
+
1
2
=
2
3
,a2=
1
2×3×4
+
1
3
=
3
8
,a3=
1
3×4×5
+
1
4
=
4
15
,…
,依據(jù)上述規(guī)律,則a99=
 
;
(3)下圖是一組有規(guī)律的圖案,第1個(gè)圖案由4個(gè)基礎(chǔ)圖形組成,第2個(gè)圖案由7個(gè)基礎(chǔ)圖形組成,…,那么第101個(gè)圖案中由
 
個(gè)基礎(chǔ)圖形組成;
精英家教網(wǎng)
(4)觀察下列各式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,…,根據(jù)觀察計(jì)算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2008×2009

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、觀察下列各式,1×3=22-1;3×5=42-1;5×7=62-1;7×9=82-1;…由此,想到此例包含的規(guī)律可以用下式( 。┍硎荆

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、觀察下列各式:2×4=32-1,3×5=42-1,4×6=52-1,…,10×12=112-1,…,將你猜想到的規(guī)律用只含一個(gè)字母的式子表示出來(lái):
n(n+2)=(n+1)2-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、觀察下列各式:
(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72; …
請(qǐng)你根據(jù)觀察得到的規(guī)律判斷下列各式正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案