已知⊙O1與⊙O2相切,它們的半徑分別為2和5,則O1O2的長是( )
A.5
B.3
C.3或5
D.3或7
【答案】分析:已知⊙O1與⊙O2相切,有兩種情況:外切和內(nèi)切;根據(jù)外切和內(nèi)切時,圓心距與兩圓半徑的關系,分別求解.
解答:解:∵⊙O1與⊙O2相切,
∴外切時O1O2=5+2=7,內(nèi)切時O1O2=5-2=3.
故選D.
點評:本題考查了由兩圓位置關系來判斷半徑和圓心距之間數(shù)量關系的方法.兩圓的半徑分別為R和r,且R≥r,圓心距為d:外離d>R+r;外切d=R+r;相交R-r<d<R+r;內(nèi)切d=R-r;內(nèi)含d<R-r.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

4、已知⊙O1與⊙O2相外切,⊙O1的半徑為3cm,圓心距O1O2=7cm,那么⊙O2的半徑為
4
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1與⊙O2相外切,⊙O1的半徑為9cm,⊙O2的半徑為2cm,則O1O2的長是
11cm
11cm

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年浙江省衢州市常山縣九年級上學期期末統(tǒng)考數(shù)學試卷(解析版) 題型:填空題

已知⊙O1⊙O2相外切,⊙O1的半徑為3,O1O2=5,則⊙O2的半徑為???????????

 

查看答案和解析>>

科目:初中數(shù)學 來源:第24章《圓(下)》中考題集(32):24.3 圓和圓的位置關系(解析版) 題型:填空題

已知⊙O1與⊙O2相外切,⊙O1的半徑為3cm,圓心距O1O2=7cm,那么⊙O2的半徑為    cm.

查看答案和解析>>

科目:初中數(shù)學 來源:第5章《中心對稱圖形(二)》中考題集(53):5.6 圓與圓的位置關系(解析版) 題型:填空題

已知⊙O1與⊙O2相外切,⊙O1的半徑為3cm,圓心距O1O2=7cm,那么⊙O2的半徑為    cm.

查看答案和解析>>

同步練習冊答案