已知,若為實數(shù),則下列不等式中成立的是( ).

A.B.C.D.

A

解析試題分析:根據(jù)不等式性質(zhì)可知a>b時,不等號左右兩邊同時乘以0時,等式兩邊相等,或不等號左右兩邊同時除以一個非零負數(shù)時符號相反,故BC排除,不等號左右兩邊同時相加會減去同一個數(shù)時,不等號不變化,故D錯誤。選A。
考點:不等式性質(zhì)
點評:本題難度較低,主要考查學生對不等式性質(zhì)知識點的掌握。注意不等式性質(zhì)3中不等號變化。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀理解:對于任意正實數(shù)a、b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b
≥0,∴a+b≥2
ab
,只有當a=b時,等號成立.
結論:在a+b≥2
ab
(a、b均為正實數(shù))中,若ab為定值p,則a+b≥2
p
,只有當a=b時,a+b有最小值2
p
.   
根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當m=
 
時,m+
1
m
有最小值
 

若m>0,只有當m=
 
時,2m+
8
m
有最小值
 

(2)如圖,已知直線L1y=
1
2
x+1
與x軸交于點A,過點A的另一直線L2與雙曲線y=
-8
x
(x>0)
相交于點B(2,m),求直線L2的解析式.
(3)在(2)的條件下,若點C為雙曲線上任意一點,作CD∥y軸交直線L1于點D,試求當線段CD最短精英家教網(wǎng)時,點A、B、C、D圍成的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的兩個一元二次方程:
方程:x2+(2k-1)x+k2-2k+
13
2
=0
    ①
方程:x2-(k+2)x+2k+
9
4
=0
      ②
(1)若方程①、②都有實數(shù)根,求k的最小整數(shù)值;
(2)若方程①和②中只有一個方程有實數(shù)根;則方程①,②中沒有實數(shù)根的方程是
(填方程的序號),并說明理由;
(3)在(2)的條件下,若k為正整數(shù),解出有實數(shù)根的方程的根.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省江陰華士片八年級下學期期中考試數(shù)學卷(帶解析) 題型:解答題

閱讀理解:對于任意正實數(shù)a、b,∵()2≥0,∴a-2b≥0,∴ab≥2,只有當ab時,等號成立.
結論:在ab≥2a、b均為正實數(shù))中,若ab為定值p,則a+b≥2,只有當ab時,ab有最小值2.  根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當m      時,m有最小值        ;
m>0,只有當m      時,2m有最小值       .
(2)如圖,已知直線L1:y=x+1與x軸交于點A,過點A的另一直線L2與雙曲線y=
x>0)相交于點B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點C為雙曲線上任意一點,作CDy軸交直線L1于點D,試
求當線段CD最短時,點A、B、CD圍成的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆江蘇省江陰長涇片八年級下學期期中考試數(shù)學卷(解析版) 題型:解答題

實踐與探究:

對于任意正實數(shù)a、b,∵≥0, ∴≥0,∴

只有當a=b時,等號成立。

結論:在(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,只有當a=b時,a+b有最小值。   根據(jù)上述內(nèi)容,回答下列問題:

(1)若m>0,只有當m=       時,有最小值         ;

若m>0,只有當m=       時,2有最小值        .

(2)如圖,已知直線L1與x軸交于點A,過點A的另一直線L2與雙曲線相交于點B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點C為雙曲線上任意一點,作CD∥y軸交直線L1

于點D,試求當線段CD最短時,點A、B、C、D圍成的四邊形面積.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆江蘇省江陰華士片八年級下學期期中考試數(shù)學卷(解析版) 題型:解答題

閱讀理解:對于任意正實數(shù)a、b,∵()2≥0,∴a-2b≥0,∴ab≥2,只有當ab時,等號成立.

結論:在ab≥2a、b均為正實數(shù))中,若ab為定值p,則a+b≥2,只有當ab時,ab有最小值2.   根據(jù)上述內(nèi)容,回答下列問題:

(1)若m>0,只有當m       時,m有最小值         ;

m>0,只有當m       時,2m有最小值        .

(2)如圖,已知直線L1:y=x+1與x軸交于點A,過點A的另一直線L2與雙曲線y=

x>0)相交于點B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點C為雙曲線上任意一點,作CDy軸交直線L1于點D,試

求當線段CD最短時,點A、B、C、D圍成的四邊形面積.

 

查看答案和解析>>

同步練習冊答案