13、把某不等式組的解集表示在數(shù)軸上,如圖所示,則這個不等式組的解集是
-1≤x<4
分析:由圖示可看出,從-1出發(fā)向右畫出的折線且表示-1的點(diǎn)是實(shí)心圓,表示x≥-1;從4出發(fā)向左畫出的折線且表示4的點(diǎn)是空心圓,表示x<4,所以這個不等式組的解集為-1≤x<4.
解答:解:由圖示可看出,從-1出發(fā)向右畫出的折線且表示-1的點(diǎn)是實(shí)心圓,表示x≥-1;
從4出發(fā)向左畫出的折線且表示4的點(diǎn)是空心圓,表示x<4,所以這個不等式組的解集為-1≤x<4.
故答案為-1≤x<4.
點(diǎn)評:不等式的解集在數(shù)軸上表示出來的方法:“>”空心圓點(diǎn)向右畫折線,“≥”實(shí)心圓點(diǎn)向右畫折線,“<”空心圓點(diǎn)向左畫折線,“≤”實(shí)心圓點(diǎn)向左畫折線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2007•東城區(qū)二模)閱讀理解下列例題:
例題:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式時,應(yīng)把它轉(zhuǎn)化成一元一次不等式組求解.
解:把二次三項(xiàng)式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“兩實(shí)數(shù)相乘,同號得正,異號得負(fù)”,得
x-3>0
x+1<0
 ①或 
x-3<0
x+1>0
 ②
由①,得不等式組無解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽車在行駛中,由于慣性作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”,剎車距離是分析事故的一個重要因素.某車行駛在一個限速為40千米/時的彎道上,突然發(fā)現(xiàn)異常,馬上剎車,但是還是與前面的車發(fā)生了追尾,事故后現(xiàn)場測得此車的剎車距離略超過10米,我們知道此款車型的剎車距離S(米)與車速x(千米/時)滿足函數(shù)關(guān)系:S=ax2+bx,且剎車距離S(米)與車速x(千米/時)的對應(yīng)值表如下:
車速x(千米/時) 30 50 70
剎車距離S(米) 6 15 28
問該車是否超速行駛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀理解下列例題:
例題:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式時,應(yīng)把它轉(zhuǎn)化成一元一次不等式組求解.
解:把二次三項(xiàng)式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“兩實(shí)數(shù)相乘,同號得正,異號得負(fù)”,得數(shù)學(xué)公式 ①或 數(shù)學(xué)公式
由①,得不等式組無解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽車在行駛中,由于慣性作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”,剎車距離是分析事故的一個重要因素.某車行駛在一個限速為40千米/時的彎道上,突然發(fā)現(xiàn)異常,馬上剎車,但是還是與前面的車發(fā)生了追尾,事故后現(xiàn)場測得此車的剎車距離略超過10米,我們知道此款車型的剎車距離S(米)與車速x(千米/時)滿足函數(shù)關(guān)系:S=ax2+bx,且剎車距離S(米)與車速x(千米/時)的對應(yīng)值表如下:
車速x(千米/時)305070
剎車距離S(米)61528
問該車是否超速行駛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:東城區(qū)二模 題型:解答題

閱讀理解下列例題:
例題:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式時,應(yīng)把它轉(zhuǎn)化成一元一次不等式組求解.
把二次三項(xiàng)式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“兩實(shí)數(shù)相乘,同號得正,異號得負(fù)”,得
x-3>0
x+1<0
 ①或 
x-3<0
x+1>0
 ②
由①,得不等式組無解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽車在行駛中,由于慣性作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”,剎車距離是分析事故的一個重要因素.某車行駛在一個限速為40千米/時的彎道上,突然發(fā)現(xiàn)異常,馬上剎車,但是還是與前面的車發(fā)生了追尾,事故后現(xiàn)場測得此車的剎車距離略超過10米,我們知道此款車型的剎車距離S(米)與車速x(千米/時)滿足函數(shù)關(guān)系:S=ax2+bx,且剎車距離S(米)與車速x(千米/時)的對應(yīng)值表如下:
車速x(千米/時) 30 50 70
剎車距離S(米) 6 15 28
問該車是否超速行駛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年北京市東城區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

閱讀理解下列例題:
例題:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式時,應(yīng)把它轉(zhuǎn)化成一元一次不等式組求解.
解:把二次三項(xiàng)式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“兩實(shí)數(shù)相乘,同號得正,異號得負(fù)”,得 ①或  ②
由①,得不等式組無解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽車在行駛中,由于慣性作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”,剎車距離是分析事故的一個重要因素.某車行駛在一個限速為40千米/時的彎道上,突然發(fā)現(xiàn)異常,馬上剎車,但是還是與前面的車發(fā)生了追尾,事故后現(xiàn)場測得此車的剎車距離略超過10米,我們知道此款車型的剎車距離S(米)與車速x(千米/時)滿足函數(shù)關(guān)系:S=ax2+bx,且剎車距離S(米)與車速x(千米/時)的對應(yīng)值表如下:
車速x(千米/時)305070
剎車距離S(米)61528
問該車是否超速行駛?

查看答案和解析>>

同步練習(xí)冊答案