如圖,PA、PB分別切圓O于A、B兩點,并與圓O的切線分別相交于C、D兩點,已知PA=7cm,則△PCD的周長等于_________.
試題分析:由于DA、DC、BC都是⊙O的切線,可根據(jù)切線長定理,將△PCD的周長轉換為PA、PB的長,然后再進行求解.
試題解析:如圖,設DC與⊙O的切點為E;
∵PA、PB分別是⊙O的切線,且切點為A、B;
∴PA=PB=7cm;
同理,可得:DE=DA,CE=CB;
則△PCD的周長=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=14cm;
故△PCD的周長是14cm.
考點: 切線長定理.
練習冊系列答案
相關習題
科目:初中數(shù)學
來源:不詳
題型:填空題
如圖,把直角三角形ABC的斜邊AB放在定直線l上,按順時針方向在l上轉動兩次,使它轉到△A″B″C″的位置.設BC=2,AC=2
,則頂點A運動到點A″的位置時,點A經過的路線與直線l所圍成的面積是
_________ .
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖,AB是⊙O的直徑,C是⊙O上一點,AD垂直于過點C的直線,垂足為D,且AC平分∠BAD.
(1)求證:CD是⊙O的切線;
(2)若AC=
,AD=4,求AB的長.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
已知四邊形ABCD是邊長為4的正方形,以AB為直徑在正方形內作半圓,P是半圓上的動點(不與點A、B重合),連接PA、PB、PC、PD.
(1)如圖①,當PA的長度等于
時,∠PAB=60°;當PA的長度等于
時,△PAD是等腰三角形;
(2)如圖②,以AB邊所在直線為x軸、AD邊所在直線為y軸,建立如圖所示的直角坐標系(點A即為原點O),把△PAD、△PAB、△PBC的面積分別記為S
1、S
2、S
3.坐標為(a,b),試求2 S
1 S
3-S
22的最大值,并求出此時a,b的值.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
小明不慎把家里的圓形玻璃打碎了,其中四塊碎片如圖所示,為配到與原來大小一樣的圓形玻璃,小明帶到商店去的一塊玻璃碎片應該是
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
已知圓錐底面圓的半徑為6cm,高為8cm,則圓錐的側面積為( )
A.48cm2 | B.48πcm2 | C.60πcm2 | D.120πcm2 |
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
如圖,C是⊙O上一點,O為圓心,若∠C=40°,則∠AOB為( )
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
已知⊙O的半徑為4cm,如果圓心O到直線l的距離為3.5cm,那么直線l與⊙O的位置關系是( )
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
已知圓錐的底面半徑為3cm,母線長為5cm,則此圓錐的側面積為 ( )
A.15πcm2 | B.20πcm2 | C.25πcm2 | D.30πcm2 |
查看答案和解析>>