如圖,等圓⊙O1和⊙O2相交于A、B兩點(diǎn),⊙O1經(jīng)過(guò)⊙O2的圓心,順次連接
A、O1、B、O2.
(1)求證:四邊形AO1BO2是菱形;
(2)過(guò)直徑AC的端點(diǎn)C作⊙O1的切線CE交AB的延長(zhǎng)線于E,連接CO2交AE于D,求證:CE=2O2D;
(3)在(2)的條件下,若△AO2D的面積為1,求△BO2D的面積.
(1)證明見(jiàn)解析(2)證明見(jiàn)解析(3)
【解析】解:(1)證明:∵⊙O1與⊙O2是等圓,∴AO1=O1B=BO2=O2A。
∴四邊形AO1BO2是菱形。
(2)證明:∵四邊形AO1BO2是菱形,∴∠O1AB=∠O2AB。
∵CE是⊙O1的切線,AC是⊙O1的直徑,∴∠ACE=∠AO2C=90°。
∴△ACE∽△AO2D!,即CE=2DO2。
(3)∵四邊形AO1BO2是菱形,∴AC∥BO2!唷鰽CD∽△BO2D。
∴!郃D=2BD。
∵S,∴。
(1)根據(jù)⊙O1與⊙O2是等圓,可得AO1=O1B=BO2=O2A,利用四條邊都相等的四邊形是菱形可判定出結(jié)論。
(2)根據(jù)已知得出△ACE∽△AO2D,從而得出,即可得出結(jié)論。
(3)首先證明△ACD∽△BO2D,得出 ,AD=2BD,再利用等高不等底的三角形面積關(guān)系得出答案即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 |
AM |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(廣西桂林卷)數(shù)學(xué)(帶解析) 題型:解答題
如圖,等圓⊙O1和⊙O2相交于A、B兩點(diǎn),⊙O1經(jīng)過(guò)⊙O2的圓心,順次連接
A、O1、B、O2.
(1)求證:四邊形AO1BO2是菱形;
(2)過(guò)直徑AC的端點(diǎn)C作⊙O1的切線CE交AB的延長(zhǎng)線于E,連接CO2交AE于D,求證:CE=2O2D;
(3)在(2)的條件下,若△AO2D的面積為1,求△BO2D的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013屆廣西桂林市初中畢業(yè)升學(xué)模擬考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖:等圓⊙O1和⊙O2相交于A、B兩點(diǎn),⊙O1經(jīng)過(guò)⊙O2的圓心,順次連接A、O1、B、O2.
(1)求證:四邊形AO1BO2是菱形;
(2)過(guò)直徑AC的端點(diǎn)C作⊙O1的切線CE交AB的延長(zhǎng)線于E,連接CO2交AE于D,求證:CE=2DO2;
(3)在(2)的條件下,若,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com